
Administrative tasks using Windows

PowerShell: Introduction and examples

of how to use the scripting technology

in everyday IT administration

MICROSOFT SWITZERLAND

Januar 1, 2008

Frank Koch (BERN)

Developer & Platform Group

Administrative tasks using
 Windows PowerShell

1

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

2

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Administrative tasks using Windows PowerShell

Requirements for this workshop
This workshop is the follow-up to our highly successful Windows PowerShell foundation course. This

time, the focus is on daily IT administration tasks using Windows PowerShell. Of course, it is not

possible to cover all aspects of this broad spectrum of tasks here – much more comprehensive books

than this booklet are available on the subject. However, we do hope that, by way of examples and

tasks, this booklet will awaken your own curiosity, and that you will incorporate Windows PowerShell

more and more into your everyday IT administration tasks.

If you don't yet know anything about Windows PowerShell, it's a good idea to acquaint yourself with

it a little to start off with. You will find numerous good descriptions and exercises on the Internet for

this purpose. I have also created a brief introduction that you can download for free from the

Internet. At http://blogs.technet.com/chITPro-de, you can download the “Windows PowerShell”

exercise booklet as a PDF file (available in German and English) as well as various practice files. Apart

from that, no further requirements exist for the initial foundation course – all you need is an up-to-

date Windows system with Windows PowerShell installed, which is available as a free download from

Microsoft.

In this follow-up workshop, however, you will be working mainly in a Windows Server environment.

This limitation is necessary, as many administrative tasks only make sense when carried out on

servers. If you do not have access to a Windows Server for your tests (by this, I DO NOT mean a live

server, but instead an additional test system), you can download a similar environment from

Microsoft for free. Please note that the download volume is over 1 GB, so do ensure that you are

aware of the download time and any potential costs for your own Internet connection beforehand.

You will find a detailed description and instructions on how to download and initially configure the

test environment as an annex to this workshop. In addition, I recommend that you use the practice

files for this workshop, which are also available as a free download. More information on this can be

found in the annex.

Please ensure that the correct server names, Active Directory configuration and other details in the

following exercises are selected in line with the test environment mentioned. If you use this booklet

WITHOUT the virtual environment, you may not be able to carry out certain exercises, or certain

examples and scripts must be adapted for use in other environments.

Other information sources on the Internet
You will find the Windows PowerShell homepage, including a download link, at

www.microsoft.com/PowerShell.

Here, you will also find links to very good Webcasts, books and other help forums.

The best blog page on Windows PowerShell is http://blogs.msdn.com/PowerShell/. Here, you will

find all the information you need on script techniques, alongside practical demonstrations.

In the Swiss IT-Pro team blog (http://blogs.technet.com/chITPro-DE) you will find the “Windows

PowerShell” exercise booklet mentioned beforehand, as well as links to Windows PowerShell

Webcasts (in German).

http://blogs.technet.com/chITPro-de
http://www.microsoft.com/PowerShell
http://blogs.msdn.com/PowerShell/
http://blogs.technet.com/chITPro-DE

3

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Helpful key combinations for a Swiss standard keyboard

CHARACTER KEY COMBINATION MEANING

| ALTGR 7(NOT: ALTGR1 = ¦) FORWARD THE OUTPUT OF A COMMAND

` SHIFT ^,FOLLOWED BY A BLANK CONTINUE COMMAND ON NEXT LINE

{ ALTGR Ä START OF A COMMAND SEQUENCE (E.G.
FOLLOWING AN “IF” STATEMENT)

} ALTGR $ END OF A COMMAND SEQUENCE (E.G. IN THE

CASE OF AN “IF” STATEMENT)

[ALTGR Ü NEEDED FOR SOME OBJECTS

] ALTGR ! NEEDED FOR SOME OBJECTS

TAB TAB KEY COMPLETES COMMANDS WHERE NECESSARY

EXAMPLE: GET-HE (TAB) = GET-HELP

Windows PowerShell was developed in Redmond, and is ideally suited to the American standard

keyboard layout. Should you be using a Swiss keyboard, you will notice that some commonly used

keys are hard to find. A small list of shortcuts is provided for you here.

4

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Contents
ADMINISTRATIVE TASKS USING WINDOWS POWERSHELL ... 2

REQUIREMENTS FOR THIS WORKSHOP ... 2

OTHER INFORMATION SOURCES ON THE INTERNET .. 2

HELPFUL KEY COMBINATIONS FOR A SWISS STANDARD KEYBOARD ... 3

CONTENTS ... 4

A AUTOMATIC INSTALLATION OF WINDOWS POWERSHELL .. 5

B SECURITY IN WINDOWS POWERSHELL ... 6

C EXERCISES WITH FILES ... 8

D WORKING IN THE REGISTRY ...11

E EXERCISES USING .NET AND WINFORMS ...12

EVALUATING FILE TYPES (EXTENSIONS) ..15

SETTING ACLS IN THE FILE SYSTEM ...16

SENDING AN E-MAIL FROM A SCRIPT ...17

F EXERCISES WITH LOG FILES AND EVENT LOGS ...20

G EXERCISES WITH PEEDY ...21

H EXERCISES WITH THE ACTIVE DIRECTORY ..26

PERFORMING A SEARCH IN THE ACTIVE DIRECTORY ...27

WORKING WITH PARTNER ADD-ONS: QUEST ..28

I REPORTS USING OFFICE WEB COMPONENTS AND POWERGADGETS ..31

J PERFORMING EVALUATIONS WITH WMI ...36

K PARTNER ADD-ONS: COMMUNITY TOOLS ..38

THE ACTIVE DIRECTORY AS A PSDRIVE, THANKS TO PSCX ..39

L PARTNER ADD-ONS: ASSIGNING GPOS USING SDM SOFTWARE ...41

M PARTNER ADD-ONS: FULLARMOR WORKFLOW STUDIO ...43

N ACCESS TO DATABASES VIA .NET ..46

SOLUTION SCRIPTS FOR THE EXERCISES IN THIS BOOKLET ..49

SCRIPT: OUT-CHART.PS1..63

MORE SAMPLE SCRIPTS ..69

CONFIGURING THE TEST ENVIRONMENT ..71

INSTALLATION OF A SIMPLE E-MAIL ENVIRONMENT ...72

FURTHER READING ..73

5

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

WORKING WITH WINDOWS POWERSHELL

A Automatic installation of Windows PowerShell
Windows PowerShell is a free add-on for Windows XP systems and higher. It can be downloaded

from Microsoft at http://www.microsoft.com/powershell. Windows PowerShell itself is relatively

small to download; however, it requires .NET Framework 2.0, which also must be downloaded if it is

not already used.

It is easy to automatically install Windows PowerShell. System management tools such as SMS,

System Center Essentials or System Center Configuration Manager from Microsoft can be used for

this purpose. As Windows PowerShell is available as a normal Windows patch, it can be installed

automatically using generally known command line parameters. However, please note that there is a

separate version of Windows PowerShell for each version of Windows. You must also take into

account whether you are dealing with a 32bit or 64bit architecture, which means that you may need

to create several software packages depending on the environment.

To save you from typing out the links for the exercises in this booklet, all links are listed in a file called

Link.TXT, which can be found in the files connected to the workshop. These links can be copied

directly into your browser. You will also find a file called Master.TXT, which contains longer scripts so

that you do not have to type these out either.

A1: Download Windows PowerShell and install it on your virtual test system. To do this, copy

the Windows PowerShell download link into Internet Explorer in your virtual environment

(add the page http://downloads.microsoft.com to the list of trusted sites when you are asked,

in order to execute the download. You will find all the links in the aforementioned text file in

the ZIP file connected to this booklet):

http://www.microsoft.com/downloads/details.aspx?FamilyId=10EE29AF-7C3A-4057-8367-

C9C1DAB6E2BF&displaylang=en

Call the EXE file with parameter /? by entering the command Run… or by means of a normal

CMD input prompt. What are the installation parameters? What is the syntax for fully

automatic installation with no user interaction?

Now carry out fully automatic installation on your virtual test system.

http://www.microsoft.com/powershell
http://downloads.microsoft.com/
http://www.microsoft.com/downloads/details.aspx?FamilyId=10EE29AF-7C3A-4057-8367-C9C1DAB6E2BF&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=10EE29AF-7C3A-4057-8367-C9C1DAB6E2BF&displaylang=en

6

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

B Security in Windows PowerShell
In the default setting, Windows PowerShell does not execute any scripts. This function must be

explicitly activated by the system administrator. Various policies are permitted for activation, which

are all connected to the signing of scripts. There are two cmdlets involved in activation: get-

executionpolicy and set-executionpolicy. Using get-executionpolicy queries the current settings.

There are four security levels:

Policy value Description

Restricted (default) No scripts are executed

Allsigned Only signed scripts are executed

RemoteSigned Locally created scripts are permitted, but all other

scripts must be signed

Unrestricted All scripts are executed

B1: Check the Windows PowerShell settings on your system by calling the relevant cmdlet in

PowerShell.

Following this, search for the correct key and value in the registry. To do this, use Windows

PowerShell or regedit. An introduction to registry navigation is provided in the first workshop

book. Tip: PowerShell is a piece of software from Microsoft installed on the local PC. From

there, refer to key 1/ShellIDs and display the item properties for Microsoft.PowerShell (the

cmdlet get-itemproperty key name should help). Is there a suitable entry for the Windows

PowerShell ExecutionPolicy?

To change the setting for the ExecutionPolicy, a system administrator must call the command

 Set-ExecutionPolicy new-value

The four values from the table above are available for selection.

B2: Use the correct cmdlet to set the Windows PowerShell ExecutionPolicy to RemoteSigned

for the purpose of these exercises. Check the settings using the appropriate cmdlet. Now look

at the registry key again. Is there now a suitable entry? What is this entry called, and what

value does it bear?

In practice of course, it is not really feasible to set the ExecutionPolicy manually. Microsoft offers

help in this area in the form of a group policy administrative template, which can be downloaded

from Microsoft free of charge.

B3: Create a new group policy using the Windows PowerShell template in order to set script

security to Unrestricted for all systems in your domain. To do this, download the Microsoft

group policy administrative template and install it on your server. The download link for the

template is: http://www.microsoft.com/downloads/details.aspx?FamilyID=2917a564-dbbc-

4da7-82c8-fe08b3ef4e6d&DisplayLang=en

http://www.microsoft.com/downloads/details.aspx?FamilyID=2917a564-dbbc-4da7-82c8-fe08b3ef4e6d&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=2917a564-dbbc-4da7-82c8-fe08b3ef4e6d&DisplayLang=en

7

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Tip: Following download and installation, launch the menu item Active Directory Users and

Computers located under Administrative Tools from the Start menu. In the newly opened

MMC, click on your domain, Contoso.local, and select the item Properties from the actions

menu. Select the menu item Group Policies and click on Edit. This opens the Group Policy

Object Editor. Click on Computer Configuration Administrative Templates and select

Add/Remove Templates from the actions menu. Click on the Add button, select the

previously installed Windows PowerShell group policy administrative template (normally

located under C:\Program Files\Microsoft Group Policy) and then click on Close. Under

Computer Settings / Administrative Templates / Windows Components, you will now find

the item Windows PowerShell. Activate the group policy, and set the value to Allow all

scripts. Finally, update the group policies on your server by entering the command gpupdate

/force in Windows PowerShell.

In this example, you have changed the standard group policy for the domain. In practice, you

would create a new group policy that summarizes the Windows PowerShell settings (and

perhaps other settings as well), and then apply this guideline to the appropriate computer

group.

B4: Check the Windows PowerShell security settings using the appropriate cmdlet. Change

the security settings to another value using the appropriate cmdlet. What answer do you get?

Now look at the registry key again. What value does the key have? And what does the cmdlet

output?

Now look at the group policy template. To do this, open the ADM file (normally located

under C:\Program Files\Microsoft Group Policy) in Notepad. Which registry key is

mentioned here? Now open regedit and take a look at both keys. Change the group policy

value as described in B3, then check whether a registry entry changes and, if so, which one

changes. Which key therefore takes precedence over which?

In this chapter, you have seen that Windows PowerShell is a shell that can be quickly and easily rolled

out on your systems, and that its security settings can be securely and centrally managed via the

Active Directory. You can, for instance, define whether only signed scripts are demanded in the

entire environment, or only on critical back-end systems, while a lower security level can be used

with no problems on developer PCs or in test environments. This means that the first version of

Windows PowerShell already meets all the necessary requirements for live use in various

environments. In the following chapters, individual possibilities for using PowerShell will be

presented. Although we cannot by any means cover all areas, we hope we will spark your interest to

experiment a little yourself.

8

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

C Exercises with files
In this block of exercises, we will be working in the file system, as is often the case for server

administrators. We will begin with exercises from the first booklet in this series, “An Introduction to

Windows PowerShell”. As detailed information concerning exercises C1 and C2 is available in the first

booklet, we won't go into further detail here.

C1: Copy the practice files from the ZIP file connected to this booklet into the directory

C:\Downloads\Files created on your test system. Then, create a script that sorts out the

“chaos” by first creating a subfolder for each file type before automatically moving the files

to the correct directory. Detailed information on this step can be found in the first booklet in

the series. You can either take the solution directly from there or work it out yourself.

However, do not create the script interactively in Windows PowerShell this time, but instead

in Notepad to start off with. Add your own detailed comments to the script. Comments are

introduced with a hash sign # in Windows PowerShell scripts, and continue to the end of the

current line. Save the script under C:\Downloads\Scripts\C1.ps1, and then execute it in the

shell.

C2: Delete the “write-protected” attribute from all files in the folder C:\Downloads\Files

(including subfolders). Again, do not execute the necessary commands for this interactively in

the shell. Instead, write another script, C2.ps1, in Notepad. Avoid error messages by factoring

out directories, as directories have no IsReadOnly property. This time, however, do not

launch the script from Windows PowerShell – instead, use the classic CMD.exe command

prompt from a new batch file, C2.cmd. Tip: Create a batch file that contains the correct path

to the script C2.ps1 (the correct path is important and must ALWAYS be specified in

PowerShell scripts, where necessary even as “.\”). The call is as follows:

powershell.exe scriptpath\name.ps1

In this exercise, you have learnt how to indirectly call Windows PowerShell scripts. Using this

technique, you can execute Windows PowerShell scripts as login scripts or system tasks, or using the

software distribution method of your choice, even if this does not know anything about Windows

PowerShell. Try to discover other Windows PowerShell command line parameters by calling

Windows PowerShell using the switch /?

In the next exercise, we will attempt to create a type of intelligent storage solution using Windows

PowerShell. This solution is not intended to compete against commercial solutions. Instead, the aim

is to show what you can do using intelligent scripts. How to proceed: Use a script to search a server

share for files that have not been used for some time. Then, move these files from the source share

(e.g. your expensive SAN with daily backup) to another share (your “archive server”). To avoid

confusing end users, also create a link on the source share that directs users to the file on the target

server, should someone still wish to access the moved file at some point. As mentioned before, this

script solution cannot and is not intended to compete with commercial archive solutions. It is simply

intended to present an alternative scripting technique, that’s all!

To enable the script to be used as flexibly as possible, the paths to the shares are not coded directly

in the script, but are instead transmitted via parameters when the script is called. The same applies

9

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

to the time interval of the last call, in order to obtain as high a level of flexibility as possible. When

the script is called, the script parameters are simply appended to the end (…myscript.ps1

Parameter1 Parameter2 …) and separated by means of spaces. The predefined variable field $Args[]

can then be used to access the individual parameters in the script. For instance, if the call is as

follows:

 Myscript.ps1 hello 17

then the variables would be $Args[0] = hello and $Args[1] = 17.

For the following exercise, you must make a few preparations in your virtual environment. First,

create two shares. The source share should point to C:\Downloads\Files and can be called Files.

Now, create a second directory called C:\Downloads\Target and simply name the share Target.

Ensure that your account has not only read access (default value) but Full Access rights to both

shares.

As all the practice files were moved in the previous exercise, the LastAccessDate attribute cannot be

used directly. Using the script C1-prepare.ps1 (included in the practice files) sets the LastAccessDate

for certain files back by one or two years. Therefore, execute this script beforehand. The script

source code can be found in the annex to this booklet.

C3: Write a script that is called with three parameters: source share, target share and last

access date. Check if the script was called with three parameters. If not, cancel the script,

indicating the correct call. Then check whether both of the first two parameters are really

existing shares (file paths). Tip: The cmdlet test-path will help you here. If you obtain the

return value $False, simply cancel (indicating the correct call?). Verification that the third

entry is a figure will take place at a later point in time, as the required troubleshooting

measures have not yet been introduced in this workshop. Now identify all files with a

LastAccessTime value older than (Today – Parameter3 (in months)). Generate a list of the

files with file names, paths and the last access date. Check the results for the following

parameters: 6, 13, and 25 months. Important: To successfully compare date values, you must

convert them into a floating point value using the method .ToOADate(). These figures can

then be compared simply using –gt or –lt.

Now, we've almost found the solution to the problem.

C4: Go through the list of all the original files and move them if necessary. However, before

moving the files, ensure you obtain the NTFS permissions by using the command get-acl in a

variable. After moving the files, assign these permissions to the target files again using

set-acl.

Of course, in Windows PowerShell you can not only copy ACLs (using get-acl and set-acl) but also

generate them. The easiest way to do this is via .NET libraries. To avoid jumping too far ahead here,

these tasks are described in the .NET section and we will come back to them later.

The last thing that needs to be done is to create the link in the source share to the new file in the

target share. There are various methods for creating a link. Firstly, the COM object WScript.Shell can

be used. Another option is using the free tool xxMkLink.exe from Pixelab Inc., which is described and

10

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

available for download at http://www.xxcopy.com/xxcopy38.htm. This tool's advantage is its ease of

use in comparison with the shell object. For our purposes, it is sufficient to call xxMKlink.exe with

two parameters:

xxMklink (path to new link but without .lnk ending) (original file with path)

C5: Download the tool xxMkLink.exe from http://www.xxcopy.com/xxcopy38.htm, and copy

the tool into your script folders. Then, move the practice files into their original directories

and reset the access data using the C1-prepare.ps1 script. Now build on your solution from

C4 by creating the link to the moved file. An appropriate task sequence would be as follows:

 Save the original ACLs and the source path

 Move the file to the target folder

 Restore the ACLs

 Create a link in the original path to the new path of the target file

 Ensure link access rights to the link (restore to the original ACLs)

Should you be dissatisfied that the link was not created using a PowerShell cmdlet but instead using

an EXE, take a look at section K as well. In the PowerShell Community Extensions, you will find an

appropriate cmdlet (new-link) that works in the same way as xxMKLink.exe, therefore permitting a

solution to be found using PowerShell alone.

We have now reached the end of our examples for working with files. If you're looking for more

ideas, consider the answers to the following questions (suggested solutions can be found in the

annex under X1 and X2):

Create a report that lists the following statistics concerning a server, share, etc.:

 The number of files per file type and the overall size for each type

 List of the top 10 file owners based on their entire volume

Similar reports can also be obtained using the file server functions of Windows Server 2003

R2, but you should try it out here just using what you have.

The aforementioned archive solution has a disadvantage, namely that all files end up in the same

target folder. To lend a clearer structure to the archive directory, you can create subfolders, perhaps

one folder per source share, and then continue expanding the rest of the directory structure as

required. However, a practical example can clarify this much better. \\Server1\Files and

\\Server1\data\Project become \\Archivserver\Server1\Files and

\\Archivserver\Server1\data\Projects

Can you also incorporate this extension into your solution script for C5?

http://www.xxcopy.com/xxcopy38.htm
http://www.xxcopy.com/xxcopy38.htm
file:\\Server1\data\Project
file:\\Archivserver\Server1\Files
file:\\Archivserver\Server1\data\Projects

11

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

D Working in the registry
Your system registry is available like a normal drive in Windows PowerShell. This enables you to use

scripts in the registry similar to those used for the file exercises. However, instead of files, the

registry contains keys and their values. If you wish to display keys, you can do this directly using the

cmdlet get-childitem. You can display the values using the cmdlet Get-childitemproperty Schlüssel.

These methods can be used to display registry values in a new way, which we first want to do

interactively.

D1: Go to the registry path HKLM\Software\Microsoft in Windows PowerShell and choose

to output only the keys beginning with W. Tip: Use the same command as for files in the file

system!

D2: This method also works for subfolders, etc. Display all keys that begin with W and end

with R, and second-level subkeys that also begin with W. Tip: This sounds a lot more

complicated than it actually is.

A new key is created using the cmdlet New-Item. For instance, to create a new entry in the

HKLM\Software key for a Contoso-specific application, the command would be:

New-Item –path “HKLM:\Software” –Name “Contoso”

Now, only the required entries and their values are still missing here. As already mentioned, this

concerns an Itemproperty that is created using the cmdlet new-itemproperty. A new string entry for

the above application would be created as follows:

New-itemproperty –literalpath “HKLM:\Software\Contoso” –Name “Appname” –Value “Contoso

CRM” –type string

D3: Create a new registry key for your own software, and write at least one value for this key

to the registry. Check the result using regedit. Once you have done that, delete the value and

the key using the appropriate cmdlets. Tip: These cmdlets begin with remove-…. You can also

use the command DEL, which you will be familiar with from the classic command prompt.

Finally, you can put what you have learnt into practice. To do this, list the autostart entries for the

RUN key and write these to a file. Once you have analyzed the syntax of the entries, create a new key

that automatically launches the Notepad application. The autostart key is

HKLM\software\Microsoft\Windows\CurrentVersion\Run

D4: Launch Notepad automatically on your system using a PowerShell script.

Tip: Output the existing entries in a file first in order to understand their syntax before

creating a new entry. Check the entry by logging in again, starting a remote session or similar.

12

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

E Exercises using .NET and WinForms
.NET WinForms allow you to display script outputs in individual windows. One example is the output

of Windows services and their relevant statuses. In the following exercises, we will be repeating

possible outputs in HTML format, and will be extending them by outputting them in table format in a

separate window.

E1: List all services with their name and status as a HTML page. This exercise is detailed in the

first booklet, and is included here simply to refresh your memory. However, assign the

output file the same name as your test computer (e.g. Computer5.html). Tip: The name of

your computer can be obtained, for instance, by using the WMI object

Win32_Computersystem. A detailed description of how to use WMI objects is also provided

in the first booklet.

You can nicely use HTML for reports, but for representing data directly, a graphical output, like in an

own windows, is more appropriate. This functionality is provided by the .NET framework which is the

foundation of Windows PowerShell. Before we take a look at the so called WinForms, we must

understand the basics. .NET commands can be used very easily in Windows PowerShell, and the most

commonly used .NET libraries are automatically loaded. If you wish to access a more seldom-used

library, you must load it first. Special nomenclature and terms are used for .NET. You can look up the

meaning of these in any .NET documentation, or for instance on the Microsoft MSDN website.

However, with the help of examples, you can quickly pick up how the principle works: all it takes is

the library in square brackets followed by two sets of colons:

Loading a .NET assembly:

*System.Reflection.Assembly+::LoadWithPartialName(“System.Windows.Forms”)

[System.Reflection.Assembly]::LoadWithPartialName("System.Drawing")

If you wish to use a .NET object, you can generally do this by creating a new instance for the object

class. This instance takes over the cmdlet New-Object, indicating the corresponding .NET class. Here,

there are very interesting object classes such as Web clients (a type of mini-browser) and e-mail

clients, if you wish to send something by e-mail. The script line for the Web client would look

something like this:

$web = New-Object net.webclient

A new object reference has now been created in the $web variable, and can be analyzed using the
cmdlet get-member . For instance, the method DownloadString() exists, which downloads an entire
website. The script line for this is:

$Seite = $web.DownloadString(“http://blogs.technet.com/chitpro-de”)

The example of the RSS Reader can be taken from the first workshop booklet. The only thing now

missing is the square brackets []. These brackets are used to define the type of return value that

should be chosen in line with the expected output if this is specified. Examples are [XML] or [void],

whereby [void] can also mean no output/return value. This also means no error messages! Let's take

another look at the example of the RSS Reader:

13

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

([XML](new-object

net.webclient).DownloadString(“http://blogs.msdn.com/powershell/rss.aspx”)).rss.channel.item |

format-table title, link

To start off with, another .NET object of the Web client type is created. The object calls a page on the

Internet, which is an RSS feed. As we know that this is an RSS feed, we can directly access the RSS

properties of the feed: its channel and the Items (entries) in the channel. This list of entries is

interpreted as XML, which enables formatted output of the title and link for the list entries.

However, it is not always necessary to create a new .NET object. Alongside objects, .NET also offers

methods that can be helpful in everyday tasks. For instance, .NET commands exist for creating

random numbers and random file names, for instance if you wish to create a temporary file during

installation. Methods can either be called directly (in the case of libraries that are loaded directly by

Windows PowerShell) or by specifying the relevant .NET assembly. Take a look at the following

example:

(new-object Random).next(1,50)

The above example calls the .NET method (random) to create a random number between 1 and 50,

and returns the random number. To do this, you don't have to create an object first – you can go

straight to the method. This is, however, different when creating a random name for a temporary file

[System.IO.Path]::GetTempFileName()

Here again, square brackets need to be placed around the assembly, and colons must also be

entered.

Let’s now take a look at how to create own windows, or Winforms as they are called in .NET, by

analyzing an example from the first Windows PowerShell workshop. Using the

System.Windows.Forms assembly, we create a Winform object. We add a button object, too and

assign the action to close the Winform when we click on the button. The code is Windows

PowerShell looks like this:

E2a: Repeat the .NET example from the first Windows PowerShell workshop, which created a

window with a single button:

[void][System.reflection.assembly]::LoadWithPartialName("System.Windows.Forms")

$form = new-object Windows.Forms.Form

$button = new-object Windows.Forms.Button

$button.add_click({$form.close()})

$form.controls.add($button)

$form.ShowDialog()

The example will work, but it’s not very appealing. With few more line of code, we can change this.

Try the next example to learn, how you can adjust Winforms to your own needs.

14

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

E2b: Extend the example E2a and add a title to your window. In addition, the button should

have a label and should fill out the whole windows, too:

[void][System.reflection.assembly]::LoadWithPartialName("System.Windows.Forms")

$form = new-object Windows.Forms.Form

$button = new-object Windows.Forms.Button

$form.Text = "My First Form"

$button.text="Push Me!"

$button.Dock="fill"

$button.add_click({$form.close()})

$form.controls.add($button)

$form.ShowDialog()

Beside buttons, the Winforms objects know many more controls you can add, like drawing areas for

graphs or pictures and tables you can use for data like in Excel. The next example shows how to use

such a table, or datagrid as they are called in .NET. Take a look at the example and play a little bit

with the parameter to better understand their meaning.

E3: Run the following script to get another presentation form for the services of your system.

The idea behind is the same to the first Winforms examples. What’s new is the way how to

fill out the datagrid. Instead of assigning each cell individually the new value, we take

advantage of the array handling of .NET and Windows PowerShell. The special @() command

actually executes all Cmdlets within the brackets and return their output which we can store

in the array variable. This allows you to easily change or add the Cmdlets you want to output

in your new datagrid. But be careful: there must not be a space between the @ and the ()!

 [void][System.reflection.assembly]::LoadWithPartialName("System.Windows.Forms")

$form = new-object System.Windows.Forms.Form

$DataGridView = new-object System.windows.forms.DataGridView

$Form.Text = "My First Datagrid"

$array= new-object System.Collections.ArrayList

$array.AddRange(@(get-service | write-output))

$DataGridView.DataSource = $array

$DataGridView.Dock = "fill"

$DataGridView.AllowUsertoResizeColumns=$True

$form.Controls.Add($DataGridView)

$form.showdialog()

E4: Try some variations to better understand the @() idea. First, sort the services by their

state before you fill the datagrid. And try to output the processes, sorted by the company,

too. Hint: simply change the Cmdlets in the @() bracket construct.

15

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

There are still other things to discover in .NET alongside WinForms. However, .NET is too

comprehensive to be described here in any more detail. More detailed Windows PowerShell books

and all the .NET literature available will provide you with more information in this area and, by

means of countless examples, will show you what can be done using .NET. We will limit ourselves to

just a few examples here.

Evaluating file types (exten sions)
There is a great command in .NET for evaluating file extensions:

*System.io.path+::GetExtension(“c:\meinpfad\datei.txt”) would for instance return files with the

extension .TXT.

E5: List all practice files and return their file extensions. Use the .NET method GetExtension

to do this. Tip: GetExtension only accepts one file at a time. For this reason, use a loop to

process all file objects. Only display extensions that are not “empty”. Group the extensions

and sort them according to their frequency. Tip: ($ext –ne “”) could be a helpful code

segment.

The return value of the sorted, grouped file extensions is an array (provided that several extensions

are available). The well-known cmdlet Measure-Object tells you how many extensions you have

altogether, while get-member gives you the properties of the array.

E6: Only output the extension that is the most frequent.

16

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Setting ACLs in the file system
ACLs have already been described in the section on working with files. The cmdlet get-acl can

provide you with a good overview of who has access to which objects (files, registry values, etc.). For

the initial analysis, it is advisable to save the result of get-acl in a variable, and to then output this as

a list (…| format-list…). It will quickly become apparent that the Access property contains exactly the

information you are looking for.

E7: Output the access rights of one of the practice files as a list. To do this, save the ACLs in a

variable, $MyAcl. The result should look like this:

An abbreviation is chosen using .NET in order to set new rights. The following command outputs a list

of access constants such as Read, Write, and ListDirectory:

[system.enum]::getnames([System.Security.AccessControl.FileSystemRights])

The required rights can be saved in a variable in order to assign them later to the required file. You’ll

be pleased to know that all desired rights can be simply listed one after another, separated by

commas:

$NewRights = *System.Security.AccessControl.FileSystemRights+”Read, Write, ListDirectory”

If new access rights are to be assigned to a file, this can be done using the method AddAccessRights

of the ACL object, which you obtained using the cmdlet get-acl. The method requires five items of

information for this purpose: the name of the user as an NT account, the rights as a FileSystemRights

list, the specification as to whether the rights can be inherited (can be None), and also whether they

should be propagated to subordinate objects in the case of a folder (may also be None). The last

thing required is the type of access rights rule: Access or Deny.

17

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

A “simple” example looks something like this:

$newrights = *System.Security.AccessControl.FileSystemRights+”Read, Write”

$InheritanceFlag = [System.Security.AccessControl.InheritanceFlags]::None

$PropagationFlag = [System.Security.AccessControl.PropagationFlags]::None

$Typ =[System.Security.AccessControl.AccessControlType]::Allow

$ID = new-object System.Security.Principal.NTAccount(“Contoso\Administrator”)

$SecRule =new-object System.Security.AccessControl.FileSystemAccessRule($ID,

$newrights, $InheritanceFlag, $PropagationFlag, $Typ)

$myACL = get-acl “.\c1-prepare.ps1“

$myACL.AddAccessRule($SecRule)

Set-ACL “.\c1-prepare.ps1t“ $myACL

If you find this procedure too complex, you'll be pleased to hear that the trusty CACLS.exe also works

perfectly in Windows PowerShell. The only difference is that you can now, of course, incorporate

CALCS much better into your script pipelines.

Sending an e-mail from a script
There are various approaches for sending an e-mail from a script. Firstly, you can access Outlook,

assuming it is installed. However, Outlook's new security mechanisms normally bar access to non-

signed scripts in order to keep out viruses and worms. However, a similar result can be achieved

using a .NET object. Here, an SMTP connection is set up to an SMTP server for the purpose of sending

an e-mail. However, please bear in mind that you must then allow SMTP connections from your

clients, a function that I do not normally consider appropriate with regard to keeping viruses, etc.

under control. However, for specific clients, or environments in which the SMTP port is open anyway,

it may be appropriate.

(To carry out this exercise, you need an SMTP server and an e-mail client to check the result. You can

set up both on your virtual test server. You will find a description in the annex of how to do this.)

To send an e-mail, we require several .NET objects of the supertype System.Net.Mail. The object

types System.Net.Mail.MailMessage and System.Net.Mail.SmtpClient are required as a minimum.

The object type System.Net.Mail.Attachment can also be helpful. These objects can be directly

created without the need for loading a further assembly. Using get-member will tell you more about

these objects.

E8: Create a new object (saved in variable $Mail-test1) of the type

System.Net.Mail.MailMessage and display the object properties using

get-member. Set the following properties of the object $Mail-Test1

 Sender: “info@contoso.local”

 Subject: “server alarm from ” and the name of the computer

 E-mail body: “Alarm triggered at.....” and the current time; more text can also be

added for clarification purposes (everything as a string).

 Recipient: “administrator@contoso.local”

18

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

While the e-mail object should be created without any problems and you can change the values for

sender, subject and e-mail text, this unfortunately does not work in the case of the recipient. This is

due to the fact that the Recipient property (To) is only available as a read property and not as a write

property. For this reason, the recipient must be specified when creating the e-mail object by, for

instance, specifying the sender address followed by the recipient address, in brackets:

$Email = New-Object System.Net.Mail.MailMessage(“Info@contoso.local”,

“administrator@contoso.local”)

E9: Create a new object, $Mail, of the type System.Net.Mail.MailMessage , specifying

Info@contoso.local as the sender and Administrator@contoso.local as the recipient. Enter

the values from exercise E8 for the subject and the e-mail body. Now create an object,

$client, of the type SMTPClient and also analyse the object using get-member. Set the value

of the e-mail server (Host) to the name of your server, and call the client method to send the

e-mail. Tip: The method adopts the MailMessage object $client.send($mail) as a parameter

(in rounded brackets).

As this example is very complex for the first time around, here you're allowed to take a look

at the solution directly and type it up, so that you can understand it better.

Check your script by using Outlook Express on your test server to look at the e-mail. Sometimes it

helps to attach log files or similar to the e-mail, which can be done using the Attachment object. To

do this, create the Attachment object when writing your e-mail, as well as the Message and the

SMTPClient object. The syntax for this is a bit different to the other cases, as you must make a direct

reference to the file to be attached:

$Attachment = new-object System.Net.Mail.Attachment(“C:\downlaods\test.txt”)

The file is attached to the message using the following command ($Email is the .NET object created

previously of the type MailMessage):

$Email.Attachment.Add($Attachment)

You now have everything you need in order to send yourself the boot.ini file for your server by

e­mail, for instance.

E10: Modify the script to send yourself your server's boot.ini file as an e-mail attachment.

19

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

You can send e-mails not only via .NET but also directly via Outlook if it is installed. Outlook 2007

now finally offers a COM model for this purpose, which can also be addressed very simply by

PowerShell. Even though it is not a .NET example, it fits in with this chapter in terms of topic, and is

therefore described briefly here. If you don’t yet have Outlook 2007, you can download a free trial

version from Microsoft. The following example shows how you can output a list of the e-mail subject

lines in the inbox:

$Outlook = New-Object .-com Outlook.Application

$Inbox = $Outlook.Session.GetDefaultFolder(6)

$Inbox.items | foreach { write-host $_.Subject }

E11: Download Outlook 2007 from http://office.microsoft.com/de-ch/outlook/default.aspx

and install it on your test system. Configure Outlook for your e-mail server, e.g. the POP3

server of the test environment. Send yourself a few test e­mails and create a few contacts,

tasks and meetings. Use Windows PowerShell to display all e-mails in the inbox. Then try to

analyse the e­mails in the inbox ($Inbox.Items) using get-member. Note: the call may take a

while, as every e-mail is exported from the inbox before being analysed. Can you only display

unread e-mails? The solution is really simple:

$Inbox.items | where { $_.Unread }| foreach { write-host $_.Subject }

Try to find out a bit more about the Outlook object. Use the method

$Outlook.Session.GetDefaultFolder(x) to access the individual functions of Outlook. The individual

numerical values for x are as follows:

Inbox 6

Calendar 9

Sent items 5

Outbox 4

Deleted items 3

Contacts 10

Journal 11

Notes 12

Tasks 13

Using get-member will provide you with ideas of what you can do in each area. For instance,

PowerShell scripts write themselves to the Outlook journal with a time and a description for tracking

purposes. In chapter G, we’ll be combining Outlook with Peedy to read e-mails out loud. If you’ve

never heard of Peedy, you’ll become acquainted with him as well. You’ll be surprised how much you

can do!

http://office.microsoft.com/de-ch/outlook/default.aspx

20

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

F Exercises with log files and event logs
There are various methods for evaluating log files and event logs. The first example also comes from

the first workshop booklet and lists all log files in the Windows directory, looks for the Error string in

them and outputs the log file with the corresponding line number of the first error entry:

dir $env:windir*.log | select-string -List error | format-table path,linenumber –autosize

F1: Modify the example so that all lines with the word “error”, and not just the first line in

each case, are output. Tip: Use the help on cmdlet select-string to find out more about the –

list parameter.

Together with the previous file exercises and the e-mail example, you can now search anywhere in

your network for log files with errors, and then either save these centrally or send them to yourself

by e-mail. In addition, using the cmdlet get-content, you can choose only to import the lines of a log

file up to where an error occurs. The online help on get-content will tell you how to do this.

There are in principle many ways to access the event log; you can access it directly through

PowerShell, or indirectly using COM, WMI and .NET. The cmdlet get-eventlog –list outputs a list of all

event logs in your system. Using get-eventlog “Eventlogname” provides you with the content of the

specified event log. However, as this output can be very long in the case of many event entries, you

should restrict the output directly by using the parameter –newest xy, which only outputs the most

recent xy entries.

F2: Output a list of the Windows PowerShell event log. Tip: The name of the corresponding

event log can be found by listing all event logs. Only choose to display the last 10 entries.

Then, group all entries according to their event ID, and sort the list based on event frequency.

Tip: Use the cmdlets Group-Object and Sort-object that were presented in the first exercise

booklet.

.NET allows you to not only read the event log, but also write in it. To do this, you must first create an

object reference to the corresponding object:

$a = new-object –type system.diagnostics.eventlog –argumentlist System

$a.source = “Windows PowerShell Labs”

$a.writeentry(“this is my first entry in the system log”,“Information“)

F3: Generate a list of all stopped services on your system and enter each service as a separate

event in the system event log. Select a suitable event text. To avoid making too many entries,

limit the list to the first five services.

You can also make entries in event logs on other computers using the above command. The general

syntax for this is, for instance:

$a = new-object –type system.diagnostics.eventlog –argumentlist System, servername

21

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

G Exercises with Peedy
Microsoft Agents are actually already considered to be obsolete. However, a small group of them has

survived and, thanks to Windows PowerShell, can be looked at in close detail. The MSAgent Peedy

must be downloaded from http://www.microsoft.com/msagent/downloads/user.aspx#character and

installed on your test system in order to carry out these exercises. The installation is nothing

spectacular – Peedy is available to you for programming, but you cannot see him yet. The following

examples concentrate on Peedy, but in principle also work for the other agents. You can also install

voice output depending on your system, if it hasn’t already been installed and set up on your

computer.

Peedy is a simple COM object that is used here to demonstrate the general handling of COM objects.

Alongside .NET and WMI, COM is another, separate dimension that encompasses a lot of variety and

power, and which has its own literature and examples. As in the case of .NET, we can only give you a

taster here of the possibilities offered by COM.

To contact Peedy, you must first access his object, as in the case of .NET, and create an individual

reference to it. MSAgents have their own syntax, which is as follows:

$PC = New-Object -com agent.control.2

$pc.connected = $true

[void]$pc.Characters.load("Peedy","C:\windows\MSAgent\chars\Peedy.acs")

$Peedy = $pc.Characters.Item("Peedy")

As you can see, an MSAgent is initially accessed indirectly via its own Control. The path to the actual

character is then assigned to this Control. In the above example, the path to the character is fixed,

which is a bad habit, as the Windows directory may of course also be on D: or have a different name.

Contary to this, the subpath \MSAgents\chars\ is always correct. In this case, you only need to check

whether Peedy exists. You can thankfully also access environment variables from Windows

PowerShell. The Windows directory can be found under $env:windir, for instance. Use the cmdlet

join-path to connect to the target path. This cmdlet is capable of creating a valid file path from

system variables, file paths and more, which is exactly what we need here:

$path = @(Join-path $env:TMP "my_temp_file.tmp")

G1: Improve on the previous example of creating a Peedy object reference by defining the

Windows directory using the system variable windir, and adding the path for Peedy. Check

whether the Peedy file actually exists. Tip: Use the examples from the file exercises.

Following this, you can address Peedy directly using the variables. Analyse the Peedy object

using the cmdlet get-member to find out more about its characteristics.

To get hold of Peedy, you may have to lure him out from his hiding place first:

[void]$peedy.Show()

[void] is specified here to surpress the output of the Peedy methods.. This is highly appropriate for

later scripts. However, it makes it more difficult to debug your work at the start. You can therefore

choose whether you wish to use [void] or not.

http://www.microsoft.com/msagent/downloads/user.aspx#character

22

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

G2: You can move Peedy across your screen by using the following commands and entering

figures for x and y. The numerical values correspond to the appropiate screen pixels.

However, please take into account that Peedy is also of a certain size:

[void]$peedy.Moveto(x,y) , or, by way of example: [void]$peedy.Moveto(10,200)

If you wish to hide Peedy, the following may come in handy:

[void]$Peedy.Hide()

Peedy can also talk to you. Try to get him to say the following phrase: “Frank Koch is a great guy from

Microsoft.” Use the speak() method to do this:

[void]$Peedy.Speak("Frank Koch is a great guy from Microsoft")

If the task should be performed quietly, let Peedy “think” instead:

[void]$Peedy.think("I shall not disturb my master")

One reason why MSAgents became obsolete is because they are so lively. MSAgents like Peedy just

love playing around on your screen. However, each MSAgent can also do other things as well. You

can see in the property AnimationNames what each character is capable of.

G3: Generate a list of all the Peedy animation sequences. Then pass this list on to Peedy’s

Play() method in order to view all animation sequences at once. Tip: First create the list then

output it on the screen. Then, using a second command, pass this list on to a loop that plays

each animation sequence through once. Please remember here that the animation

sequences take a certain amount of time. For this reason, pause the script using the cmdlet

Start-Sleep command for five seconds each time. As some Peedy animation sequences are

infinite, stop each sequence once it is complete using the command $Peedy.StopAll().

G4: Create a system monitor that outputs all stopped services as speech using Peedy. To keep

this task short, choose five services. Select a suitable animation sequence to capture the

system administrator’s attention.

Peedy can also introduce your next presentation. Look at the following script for this. To start off

with, Peedy is loaded and then moved to a certain position on the screen:

Load peedy as usual; hardcoded Windir, not checking if Peedy exists

$PC = New-Object -com agent.control.2

$pc.connected = $true

[void]$pc.Characters.load("Peedy","C:\windows\MSAgent\chars\Peedy.acs")

$Peedy = $pc.Characters.Item("Peedy")

Move Peedy to right screen position

[void]$peedy.Show()

[void]$peedy.moveto(100,300)

23

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Play some animation to get attention from audience

[void]$peedy.Play("GetAttention")

Start-sleep –seconds 5

[void]$Peedy.StopAll()

show how polite Peedy can be

[void]$peedy.Play("Greet")

Start-sleep –seconds 5

[void]$Peedy.StopAll()

spread the word: the session will start soon

[void]$peedy.Speak("The Show starts in 5 minutes")

Start-sleep –seconds 5

say goodbye to the audience and disappear

[void]$peedy.Play("Greet")

Start-sleep –seconds 5

[void]$Peedy.StopAll()

[void]$peedy.Hide()

If you wish to hear the voice output in languages other than English, you can install other languages

too. After doing this, all you need to do is tell Peedy what language you want to use by using the

LanguageID number in the Peedy object property of the same name. Please note that many

languages are available in both a male and a female voice, meaning you also have to set the

TTModeID value. You will find the “cryptic” values for this purpose on the MSAgent website under

the examples for developers. For instance, if you want a German male or female voice, set the

following values:

$peedy.LanguageID=1031

$peedy.TTSModeID = "{3A1FB760-A92B-11d1-B17B-0020AFED142E}" # --> Anna = Woman

$peedy.TTSModeID = "{3A1FB761-A92B-11d1-B17B-0020AFED142E}" # --> Stefan = Man

Many thanks to Frank Glattky for investigating these properties of Peedy and telling me

about them.

Peedy is also great for defining your own Functions. Let’s take a look at a simple example that you

can adapt to suit your own needs. Functions in Windows Powershell are presented as command

blocks that can be called with a command, and can thus be easily integrated into other command

chains. They are created directly using the command function name-of-function { the actual

commands are then placed between the curly brackets}

Here’s a simple example:

Function now{ get-date }

24

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Each time you enter now, you are now shown today’s date. Of course, functions can also execute

more complex command chains and be called using parameters:

Function Sum { $Args | $sum = $sum + $_; return $sum}

In this example, several calculations are carried out in the function, and the desired result is then

supplied as the return value. Unless otherwise defined, variables remain in their corresponding

environment. In the above example, the auxiliary variable $sum does not exist outside of the

function; you cannot access it at the end either – as soon as the function is completed, $sum

vanishes into thin air.

G5: Now create your own function with the name Out-Peedy, which as an argument adopts a

text that is then output by Peedy. Tip: Assume that Peedy is not loaded before the function

and is therefore not defined. You can therefore take the start of the procedure directly from

the other Peedy examples. Also use the start-sleep command.

Using Out-Peedy, you have learnt how easy it is to define and use functions in Windows PowerShell.

You can also expand Out-Peedy further by allowing a new argument: -quiet. Whenever you call Out-

Peedy Text –quiet, output does not ensue via the Peedy command Speak, but instead via Think.

G6: Add the additional argument to your Out-Peedy function. To make things easy, just check

whether there are two arguments and, if so, if the second begins with –q. Everything

beforehand is compiled and output as a string, and everything afterwards is ignored. If the

trigger –q is used, Peedy should only “think” and not “speak”.

To ensure that the out-peedy function is always available, you can add it to your PowerShell profile.

Your profile is automatically loaded when Windows PowerShell is started. There is therefore a

personal profile for each user, as well as a PC profile. For this reason, if you want to be able to use a

function when using automatically started scripts as well, it should be saved in the PC profile. The

profile file is Microsoft.PowerShell_profile.ps1 in the directory Own files\WindowsPowerShell (or

the equivalent depending on your system language and version of Windows). It is loaded when

Windows PowerShell is started up. For this reason, try to add out-peedy to the file if there is one, or

create a new file that includes the function out-peedy. Upon restarting Windows PowerShell, out-

peedy should be directly available.

(Please note that script authorizations must be set as required so that the script files can actually be

executed!)

25

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

The following profile files are available on the systems:

Location of profile file File name Refers to

%Systemroot%System32\WindowsPowerShell\v1.0 Profile.ps1 All users, all shells

%Systemroot%System32\WindowsPowerShell\v1.0 Microsoft.PowerShell_
Profile.ps1

All users
PowerShell only
(not Exchange, etc.)

%userprofile%\Documents\WindowsPowerShell Profile.PS1 Current user
All shells

%userprofile%\Documents\WindowsPowerShell Microsoft.PowerShell_
Profile.ps1

Current user
PowerShell only
(not Exchange, etc.)

G7: If you installed Outlook 2007 in chapter E, now use out-peedy to read all unread e-mails

out loud. So Peedy doesn’t get hoarse, start off with the e-mail subject lines.

Even though this may be a somewhat hectic solution (as Peedy keeps disappearing), it is impressive

to see how Windows PowerShell can implement a solution like this with so little effort. Perhaps you’d

like to add another parameter to out-peedy to stop Peedy from disappearing? out-peedy can be a

very valuable extension to your Windows PowerShell. And, if you don’t want to install Peedy on all

computers and servers, another MSAgent, Merlin, is always included in Windows. You can call and

use Merlin just the same as Peedy:

$PC = New-Object -com agent.control.2

$pc.connected = $true

[void]$pc.Characters.load("Merlin","C:\windows\MSAgent\chars\merlin.acs")

$Merlin = $pc.Characters.Item("Merlin")

And, before you ask – yes, Merlin and Peedy can both be active on the screen at the same time and

perform different tasks.

26

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

H Exercises with the Active Directory
There are various options for working with the Active Directory. Using individual cmdlets, which

would be the most user-friendly method, is still not possible. However, we can assume that Microsoft

will sort out this drawback in future. Instead of its own cmdlets, Windows PowerShell lets you

administer the Active Directory via ADSI. ADSI is an interface protocol that allows access not just to

the Active Directory, but also to other directory services. ADSI is very well documented and has been

on the market for years, meaning it is not necessary to provide an introduction to it here. If by any

chance you haven’t heard of ADSI, you can perform a search for ASDI on the Microsoft MSDN

website. In the following example, you can see the effort required to create a new organizational unit

(OU) in the Active Directory via ADSI for yourself:

$objDomain = *ADSI+“LDAP://dc=nwtraders,dc=com”

$objOU = $objDomain.Create(“organizationalUnit”, “ou=HR”)

$objOU.SetInfo()

The first line establishes the connection to the directory service and sets the path where the new

object is to be created, in this case in the domain nwtraders.com.

In the second line, the object to be created is specified, in this case an OU with the name “HR”. Only

when the SetInfo command is given are these changes written to the Active Directory. This is then

helpful if you wish to set further properties after creating the object, as is shown below in the

example of creating a user:

$objOU = *ADSI+“LDAP://ou=HR,dc=nwtraders,dc=com“

$objUser = $objOU.Create(„user“, „cn=frankoch“)

$objUser.Put(„sAMAccountName“, „frankoch“)

$objuser.SetInfo()

Note that you have to specify all mandatory object properties when creating the user object. Can you

analyse the member object using Get-Member, for instance?

If you’re not sure what the current directory environment is called, you can query this in a very

simple way. By simply entering *ADSI+““ in the Windows PowerShell prompt, the correct LDAP path

will be output. You can also save this return value in a variable for later use. Get-member again lists

all the properties that you can use. You will find the LDAP path, for instance, under the property

distinguishedName:

$dc = *ADSI+““

$dc.distinguishedName

The result is, for instance: dc=nwtraders,dc=com

H1: First, create a new OU for human resources (HR) in your virtual environment

(Contoso.local), and a new group within this OU. The procedure is the same as for creating a

user object. This time, however, you must select the “group” object type instead of the “user”

object type. Finally, generate two user accounts – one for yourself, and one with the name

Frankoch. Please note that a group also has a SAM Accountname!

27

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

As soon as you’ve created an account, you can set your initial password and activate the account. It is

important to activate the account, as a new account is always created as a deactivated account by

default. The password can be set most easily using the method $User.SetPasswort(“New Password”)

of the user object $USER. Accounts can only be activated indirectly in Windows PowerShell. To do

this, you must use this somewhat cryptic command sequence:

$User.psbase.InvokeSet("AccountDisabled",$false)

H2: Activate both the user objects created in H1 in your virtual environment, and set an initial

password. Use get-member to check the user objects for other properties, and then try to set

these as you wish.

Of course, objects from the Active Directory can also be deleted via the ASDI interface. Instead of the

Create, a Delete is used for this purpose. The following example deletes the user you have just

created from the Active Directory:

$objOU = *ADSI+“LDAP://ou=HR,dc=nwtraders,dc=com“

$objOU.Delete(„user“, „cn=frankoch“)

No SetInfo() is required for Delete.

Performing a search in the Active Directory
If you wish to alter certain objects in the Active Directory, you first have to find them. The object

class DirectorySearcher (yes, it really does exist!) is available for this purpose, which makes life a bit

easier. Here’s an example:

$ADDomain = *ADSI+“LDAP://dc=contoso,dc=local”

$ADSearch = New-Object System.DirectoryServices.DirectorySearcher

$ADSearch.SearchRoot = $ADDomain

Definition of the filter: only computer, search for names

$ADSearch.Filter = „(objectCategory=computer)“

$ADSearch.PropertiesToLoad.Add(“name”)

$results = $ADSearch.FindAll()

For the result we use a trick to only display the names:

Foreach ($res in $results)

{

 $ADComp = $res.Properties

 $ADcomp.Name

}

The result is now located in the array $results and can be further used from there. The Filter property

is a typical ADSI search expression that is based on ADSI nomenclature. This nomenclature is very

unusual and different to that used in Windows PowerShell, so we won’t delve into the topic further

28

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

here. I will only say that, if you want all properties to be loaded, and not only the name, replace the

line

$ADSearch.PropertiesToLoad.Add(„name“) with $ADSearch.PropertiesToLoad.AddRange()

However, if you would like to load only certain properties, you must add each of these properties

using PropertiesToLoad.Add(name_of_property).

As a search category, you can also use users for instance, instead of computers.

H4: Search for all users in the Active Directory on your test system. Get the system to output

the following properties: name, description. Please note that the ADSI query is case-

sensitive, so name and description must be written in lower-case letters.

Working with partner add-ons: Quest

Working with the free Quest tools is considerably easier than working with ADSI. Quest is a close

partner of Microsoft in many areas, and offers practical add-ons to Microsoft solutions. Quest offers

a very interesting, free add-on for Windows PowerShell, which contains cmdlets for managing the

Active Directory. Quest showed foresight in naming all their cmdlets

…-QAD… (instead of –AD, i.e. get-QADUser instead of get-ADUser), thus enabling Microsoft to close

the existing loophole in a later version of Windows PowerShell. You can download the Quest tools at

http://www.quest.com. Here, you will also find a detailed description of the tools for download. The

Quest cmdlets are available as a PSSnapIn, which happens when the specific Quest shell is loaded

from the Start menu entry. If you want to add the PSSnapin to the normal Windows PowerShell, all

you need to do is call the following command in Windows PowerShell:

Add-PSSnapIn Quest.ActiveRoles.ADManagement

The PowerShells for Exchange 2007, Operations Manager and similar products are individualized in

the same way; their individual Cmdlets can be added to the normal Windows PowerShell as shown.

H5: Install the Quest add-ons for Windows PowerShell from http://www.quest.com. Launch

the new Quest shell from the Start menu and display all new cmdlets. Tip: Quest commands

always contain a QA in the cmdlet name. Then, load the Quest PSSnapin in the normal

Windows PowerShell and attempt to display all new cmdlets. How can you automatically

load the Quest PSSnapins? Tip: Think back to the profile files in the previous exercises.

Quest tools can also be used to choose the precise domain controller you wish to connect to. You will

find details on this in the extensive Quest handbook. We only take a closer look at a few functions

here, such as creating a user, changing group affiliations or changing user attributes. A new user is

created using the new Quest cmdlet New-QADUser. Display the help for the cmdlet for creating a

new user in order to take a closer look at the many possibilities available. In any case, the following

syntax is enough to create a user:

http://www.quest.com/
http://www.quest.com/

29

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

new-QADUser -name 'user1'

-organizationalUnit 'OU=companyOU,DC=company,DC=com'

-SamAccountName 'user1'

-password 'P@ssword'

You will already notice at first glance that the syntax appears simpler (more similar to PowerShell)

than the ADSI/LDAP syntax from the previous exercises.

To modify an existing user, you must choose the relevant user object and specify the new attributes.

The Set-QADuser serves this purpose. Here is an example:

set-QADUser 'CN=John Smith,OU=CompanyOU,DC=company,DC=com'

-description 'Sales person'

The user object can also be selected directly via its Domain/User property:

set-QADUser -identity 'company\jsmith'

-city 'New York'

-description ''

-password 'P@ssword'

You will find a list of the attributes that you can change in the descriptions on Quest. Here is a

selection for you:

User attribute PowerShell cmdlet syntax

company -Company

description -Description

department -Department

displayName -DisplayName

facsimileTelephoneNumber -FAX

givenName -FirstName

sn -LastName

mobile -MobilePhone

info -Notes

physicalDeliveryOfficeName -Office

password -Password

telephoneNumber -Phone

samAccountName -SamAccountName

st -StateOrProvince

wWWHomePage -WebPage

H6: Create a new user using the new Quest cmdlet New-QADUser. The user should be

created in the HR organizational unit with the name Frankoch3. You can choose the

password yourself. Create a new group and add the user Frankoch3 as a member of the

group. Tip: Look at the syntax for the cmdlets New-QADGroup and Add-QADGroupMember.

30

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Finally, we will quickly look at how the process of creating multiple users can be easily automated

using Windows PowerShell. Ideally, a CSV file containing the relevant user data would be available,

for instance. The cmdlet Import-CSV can be used to import a CSV file. The ADSI or Quest functions

described are then used to create the user objects.

H7: In the sample files in the H folder, you will also find a CSV file that you can use for a bulk

import of several users into the Active Directory. Load the file using import-csv H7-Users.csv

and work through it line by line in order to create all accounts in a new OU in the Active

Directory.

As you see, working in the Active Directory is not as complex as it first looked using ADSI. In

particular, the Quest tools make creating users and groups child’s play. Alongside the Quest tools,

there are also options using .NET classes and an interesting approach via a Windows PowerShell

Provider from the PowerShell Community Extensions, which is introduced in chapter K. This provider

incorporates the Active Directory as an additional PowerShell drive (in the same way as the registry is

also incorporated as a “drive”) to enable you to navigate in the Active Directory in the same way as in

the file system: with cd .. through the OUs, or DEL * to delete users. And as if those new possibilities

weren’t exciting enough, further examples are presented in chapter K.

31

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

I Reports using Office Web Components and PowerGadgets
To generate reports directly from Windows PowerShell, the much-used option of generating a HTML

output via the cmdlet convertto-HTML exists. However, this cmdlet cannot be used to create more

graphically appealing reports. The Office Web Components offer an additional way to simply produce

elegant reports. The Office Web Components can be downloaded free from Microsoft. However,

there are certain licencing conditions for using them that you should take a closer look at. To cut a

long story short; if you want to use the output in a static way, this is possible. However, if it needs to

be possible for readers to make active changes to the reports, each user must have a valid Office

licence.

To create the reports, the Office Web Components must first be installed on the system concerned.

To find out more about the Office Web Components and download them, visit

http://www.microsoft.com/downloads/details.aspx?familyid=7287252C-402E-4F72-97A5-

E0FD290D4B76&displaylang=en

The Office web components are used like COM objects. Because they roughly have the same feature

set like Excel, the Office web components are as complex as Excel. Therefore we limit ourselves here

and only use basic bar charts. If you want to dig deeper, you should use the extensive documentation

of the Office web components in the internet at the Microsoft MSDN web pages.

The following script shows the possibilities of Office web components. The first lines initialize the

COM objects and create an empty bar chart diagram. To add and store the values we want to print

out, we use two arrays called values and categories.

Author Stephen Hulse shulse@hotmail.com

$categories = @()

$values = @()

$chart = new-object -com OWC11.ChartSpace.11

$chart.Clear()

$c = $chart.charts.Add(0)

$c.Type = 4

$series = ([array] $chart.charts)[0].SeriesCollection.Add(0)

Get-Process | Sort-Object cpu | Select-Object processname,cpu -last 10 | foreach-object {

 $values += $_.cpu * 1

 $categories += $_.processname }

$series.Caption = "chart"

$series.SetData(1, -1, $categories)

$series.SetData(2, -1, $values)

$filename = (resolve-path .).Path + "\chart2.jpg"

$chart.ExportPicture($filename, "jpg", 800, 500)

invoke-item $filename

http://www.microsoft.com/downloads/details.aspx?familyid=7287252C-402E-4F72-97A5-E0FD290D4B76&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=7287252C-402E-4F72-97A5-E0FD290D4B76&displaylang=en

32

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Hard coding the Cmdlets we want to output is not very flexible. We need to change the code a little

bit to allow the creating of the values outside the code block for the diagram. The next example

shows such a generic diagram script. It uses the Office web components in exactly the same way, but

allows the values to be handed over as parameters. The code below is commented in the solution

chapter in the appendix of this booklet.

param($xaxis, $yaxis)

begin {

$categories = @()

$values = @()

$chart = new-object -com OWC11.ChartSpace.11

 $chart.Clear()

 $c = $chart.charts.Add(0)

 $c.Type = 4

 $c.HasTitle = $true

 $c.Title.Caption = "Chart generated on $(get-date)"

 $series = ([array] $chart.charts)[0].SeriesCollection.Add(0)

}

Process {

$categories += $_.$xaxis

 $values += $_.$yaxis *1

}

End {

 $series.Caption = "chart"

 $series.SetData(1, -1, $categories)

 $series.SetData(2, -1, $values)

 $filename = (resolve-path .).Path + "\chart.jpg"

 $chart.ExportPicture($filename, "jpg", 800, 500)

 invoke-item $filename

}

This generic script can now be called within any Windows PowerShell code segment. The usage looks

like this and calls the scripts with the 2 parameters (in the right order!) to generate the bar chart:

get-process |.\out-chart.ps1 processname handles

I1: Use the sample script out-chart.ps1 to create a graph of the 10 processes that take up the

most CPU time, in descending order. To do this, download the Office Web Components from

http://www.microsoft.com/downloads/details.aspx?familyid=7287252C-402E-4F72-97A5-

E0FD290D4B76&displaylang=en and install them on your test system. You will find a brief

description of the source code for out-chart.ps1 in the annex. Tip: If you want to work more

using the Office Web Components, please also make sure you read the detailed descriptions

and examples on Microsoft’s MSDN website.

http://www.microsoft.com/downloads/details.aspx?familyid=7287252C-402E-4F72-97A5-E0FD290D4B76&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=7287252C-402E-4F72-97A5-E0FD290D4B76&displaylang=en

33

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

As an alternative to Office Web Components, you can also use the commercial solution

PowerGadgets, which is a great deal more powerful and flexible than the out-chart.ps1 script. You

can download a free trial version of PowerGadgets at http://www.powergadgets.com/. After

installation, you will find a new folder for the PowerGadgets in the Start menu with a link to

Windows PowerShell, which loads the relevant PSSnapin for the PowerGadgets. Excellent

documentation for the PowerGadgets, including training videos, is available on the homepage, so we

won’t go into the many possibilities here. Instead, we will simply repeat the example from I1, the

only difference being that we will use the cmdlet out-chart instead of out-chart.ps1.

I2: Download the free trial version of PowerGadgets and install the tool in your virtual test

environment. You will find the download link on the homepage

http://www.powergadgets.com/. Start Windows PowerShell from the PowerGadget folder

and observe which PSSnapin is loaded. Also try loading this PSSnapin in a normal Windows

PowerShell.

To view the cmdlets for a specific Windows PowerShell PSSnapin, you can use the command Get-

command –pssnapin Kompletter-PSSnapin-Name.

I3: Display all new cmdlets for the PowerGadget tool. You will see that the PowerGadgets are

capable of all possible types of graphical output, such as bar charts and vector diagrams (for

percentages, etc.) and even maps! Use the solution from I1 to create a graph of the 10

processes that take up the most CPU time, in descending order. However, create the graph

using the PowerGadget cmdlet Out-Chart instead of out-chart.ps1. So that out-chart knows

which data is to be output, select the two values you are interested in beforehand, in this

case Processname and CPU.

The enormous capabilities of PowerGadgets should not be underestimated, as the graphical output

can be a tremendous assistance in everyday work. The following examples clearly demonstrate this.

First, copy all test files from the previous exercises back into one single directory. Would you be able

to say without hesitation how many files there are of each type? PowerGadgets even lets you see

how many there are and lets you quickly find the largest files in the folder.

I4: Create a bar chart that shows all file extensions and the number of files with each

extension. Analyse the diagram a little using your mouse. Tip: The solution is very quick, and

the cmdlet Group-Object will help.

Now draw up a list of the ten largest files and output this as a chart as well.

Even if it looks so to start off with, the PowerGadgets must not necessarily represent the end of the

pipeline. For instance, values can be passed to the PowerGadgets intially in order to be selected from

there by users by double-clicking. This object is returned to the pipeline, where it can be processed

further. We will take a closer look at this in the next exercise.

http://www.powergadgets.com/
http://www.powergadgets.com/

34

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

I5: Take your solution from I3 and, as the simplest example, take the return to the pipeline

and add on the output from the object at the end as a new command. Tip: Simply

add| Foreach { $ } to directly output the object that you clicked on previously in the chart.

You can now form a combined solution from I5 and I4 that initially lists all file types for you. The list

of the largest files is then shown for the file type you select, and files you select can be deleted with

just one mouse-click. Windows administrators tend to really like this combination of shell and

mouse, whereas just thinking about it may give Unix, Linux and Host fans the shivers.

PowerGadgets are much more powerful than I am able to show here. For this reason, please do take

a look at the examples that come directly with the PowerGadgets. You will find these in the Samples

folder (normally under %ProgramFiles%\PowerGadgets\Samples). These examples also show the

options for creating maps, bar charts, vector diagrams and digital displays. Here are a few sample

outputs:

35

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

36

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

J Performing evaluations with WMI
The first workshop booklet provided a short introduction to the world of WMI, so we won't go into it

here. Instead, a few exercises are suggested to help you become better acquainted with the almost

infinite possibilities of WMI. If, in your work as an administrator up to now, you’ve managed to steer

clear of WMI, please tell me how – I’d like to know how you’ve managed it, and why you would want

to. After all, WMI really does make the everyday work of a Windows administrator much easier.

To give you a first impression of how powerful WMI is, list all WMI classes using the simple

PowerShell command Get-WMIObject –list. You should assume the task list will be extremely long,

but give it a try anyway.

J1: List all WMI classes of the type Win32 that begin with “n”. Output the results as a table

that only lists the names of the classes. How many classes of this type are there?

In the results list from exercise J1, you will also find the class for network adapter

configuration. All network adapter objects can be found in this class. Using the parameter –Filter

Eigenschaft=Wert, you can now choose certain objects. For instance, to get all network adapters that

have an IP address, you can use the following syntax:

Get-WmiObject -Class "Win32_NetworkAdapterConfiguration" -Filter IPEnabled=True

J2: Now list all network adapters that have been assigned an IP address. Output the results as

a table containing the index, the IP address and the adapter description. Now also take a look

at the WMI class for the network adapters themselves (not their configuration). Use get-

member to output the properties and methods of the adapters. Can you find a method for

activating or deactivating adapters? If you do not find the WMI class straight away, try

executing this WMI query on your host computer as well (i.e. not in the virtual test

environment).

As WMI not only works in Windows PowerShell, and as the WMI syntax is in principle no different to

that of VB, I will not list the classic WMI examples here. Instead, I’ll be giving you an example that

was also described in the first booklet. In this example, Windows PowerShell is used to compare the

battery installed in Dell notebook computers against a recall list published on the Internet of

batteries at risk of explosion. At the time of writing, Dell unfortunately used the wrong certificate for

the website, so you have to initially open the website manually in the browser and confirm that you

wish to open it despite the wrong (= unsecure) certificate. If you do not perform this step, the.NET

object webclient will not perform it later in the script.

The example also shows the possibilities offered by Regular Expressions, one of the most powerful

ways of comparing expressions of all kinds with a chosen format. Let’s take a closer look at the

example [A-Z0-9][A-Z0-9][0-9][0-9][0-9]:

 Each set of square brackets stands for a character.

 The items in the square brackets indicate the value that this character can have; for instance,

A-Z can be any letter, 0-9 any number, and A-Z0-9 a letter or a number.

37

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Dell marks its batteries with 5 characters (5 sets of square brackets). The first and second characters

may be letters or numbers. In contrast, the last three characters must be numbers. The result is the

following regular expression:

[A-Z0-9][A-Z0-9][0-9][0-9][0-9]

So, the script for comparing the batteries is as follows:

 First, a Web client object is created and the Dell website is launched.

 The regular expression for Dell batteries is created (the brackets we just looked at now).

 A search is performed on the website for the expression, and you are then informed how

many different batteries are listed (upon writing this booklet there were 38).

 Then, the names of the batteries available are output and compared with the list of names. If

any matches are found, an alert is triggered.

J3: Execute the following lines of code:

$WC = New-Object net.webclient

$Global:BatSeite = $wc.downloadstring(“https://www.dellbatteryprogram.com/“)

$R = *regex+” (*A-Z0-9][A-Z0-9][0-9][0-9][0-9+)”

$Matches = $R.Matches($Global:BatSeite)

Write-Host “Anzahl gelisteter Akku-Typen: $($Matches.Count) “

$Global:BatterieListe = $Matches | ForEach { $_.Groups[1].Captures[0].value }

Get-WMIObject –Class Win32_Battery | ForEach { $BatName = $_.name; break }

If ((select-string –pattern $BatName -InputObject $BatterieListe –Quiet) -eq $True) {

 BatterieListe | Where {$BatName –match $_ } | Foreach {

 Write-Warning “Betroffen:Akku $Name – Übereinstimmungen: *$_*`n“ - -

Similar exercises can also be used for other notebook manufacturers. The only reason I have used

Dell here is because I am personally a big fan of Dell, and I still enjoy using my private Dell notebook

– I don’t want you to get the wrong idea from this example!

Regular expressions are extremely powerful but also a topic in their own right, so we’ll leave it at this

simple example here. However, you will find detailed descriptions of everything alongside many

more examples of usage on both the MSDN website and in literature on the subject.

38

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

K Partner add-ons: community tools
As Microsoft published Windows PowerShell, many people were impressed straight away, as not only

had a powerful shell been launched – this shell also had interfaces to expand it! So, alongside

professional and commercial add-ons such as PowerGadgets, developer communities also quickly

developed add-ons. One of the most powerful add-ons that are provided free of charge comes from

one of these communities. You will find the PSCX (PowerShell Community Extensions) directly under

http://www.codeplex.com/PowerShellCX, where you can read more about the development. Here,

you can also make your own contributions and add-ons available to the community. In the PSCX, you

will find tools and add-ons for everyday IT tasks, alongside the clever aliases for detecting typical

typing errors. Only a few new cmdlets will be presented in this chapter for reasons of space. For this

reason, please don’t forget to read the detailed descriptions, auxiliary files and websites available for

the PSCX in order to find out more.

K1: Download the PowerShell Community Extensions (PSCX) from the website

http://www.codeplex.com/PowerShellCX (top right-hand corner) and install them on your

test system. Create the test profile as suggested. Following installation, you will find one of

the first add-ons directly in Windows Explorer. In the context menu for any folder you will

now find the new entry “Open PowerShell here” for opening a new Windows PowerShell that

calls the selected folder directly as a startup directory. Open a Windows PowerShell in this

way, and view the loaded PSSnapin (get-pssnapin). You should now see the PSCX PSSnapin.

Now display all cmdlets of the PSCX PSSnapin and list the new help text.

As an example, you will now be introduced to some PSCX cmdlets that could have been put to good

use in the previous exercises. If you wish, repeat the named exercises, incorporating the new PSCX

add-ons.

K2: In chapter C, you carried out several exercises involving files. In these exercises, links

were created in the file directory at the end using the program xxMKLink. Instead of the EXE

file, the PSCX add-ons include the cmdlet New-Shortcut, which is called in a similar way:

new-shortcut „Anlegepfad zum neuen Shortcut“ „Ziel des Shortscuts“

So, in the solution to exercise C5 replace xxMkLink.exe with New-Shortcut.

In the PSCXs, you will also find nice “dir” add-ons such as dirS and dirT, which sort a directory by size

or time. See the help texts for more details.

K3: In chapter G you met Peedy, a COM object that can also be used for voice output. At the

end, you created the out-peedy function for implementing voice output from your

PowerShell scripts. At the end of G7, your unread e-mails were read out loud. In the PSCX

add-ons you will find the cmdlet out-speech, which, although not as charming as Peedy,

doesn’t cause as much chaos and flapping about on the screen! Try replacing out-peedy with

out-speech in G7, and decide which you prefer.

http://www.codeplex.com/PowerShellCX
http://www.codeplex.com/PowerShellCX

39

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

K4: If you want to access another computer, you should first check whether it is available on

the network. The cmdlet Ping-Host can help here. In contrast to the old Ping command, here

you receive the return value as an object, enabling you to access the individual values more

easily. So, ping your own computer and analyse the result using get-member. Following this,

output the values for the host name and the number of lost packets (leaving the usual

statistics out, of course). If these account to 0, the computer is probably accessible on the

network. You can use this knowledge in future scripts to initially check the availability of

remote systems. Incidentally, Ping-Host can also handle name lists and processes the list

automatically name by name.

K5: In exercises E9 and E10, you saw how you can send an e-mail via .NET. Calling the .NET

objects, which is somewhat awkward, can be simplified using PSCX cmdlet Send-SmtpMail.

Here as well, you must of course specify the usual parameters such as the SMTP server,

sender and recipient. However, many of these values can be directly transferred to the

Windows PowerShell profile, meaning that you don’t have to enter them again each time.

The help on PSCX will explain this profile file to you and the values that can be saved in it.

You can use get-help Send-SmtpMail –detailed as a simple example for using the cmdlet:

Send-SmtpMail -SmtpHost contoso-DC1.Contoso.local – to Administrator@contoso.local

-from info@contoso.local -subject “Warning” – body “This is a generic warning email.”

Try sending the e-mail from exercise E9 using the cmdlet Send-SmtpMail.

The option of automatically creating ZIP files is particularly interesting for e-mail attachments. The

cmdlet write-zip in the PSCX add-ons serves this purpose. The call is surprisingly simple:

dir * | write-zip -outputpath test.zip

This cmdlet compresses all files into one single ZIP file, Test.zip. Other call types are possible, as well

as other degrees of compression and the transferal of directory structures to the ZIP file. You can find

more information on this in the help for the cmdlet write-zip.

The Active Directory as a PSDrive, thanks to PSCX

Although the PSCX cmdlets are already a powerful add-on for Windows PowerShell, installing the

PSCX offers even more. Access to the Active Directory via a PowerShell drive is enabled via an

individual provider. cd MyDomainName: lets you switch directly to the Active Directory, in a similar

way to cd HKLM: for the registry. You can then switch between the OUs via CD. Users, groups and

other objects are simply listed using dir, and del * can be used to simply delete objects and

subordinate objects. Even if this doesn’t give you more rights than you had in the first place, it lets

you work quite easily in the Active Directory. Try it for yourself!

Of course, the provider can also be used to create individual Windows PowerShell Drives for other

Active Directories and ADAM directories or the local user database.

40

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

In addition to the provider, PSCXs also offer several new cmdlets for the Active Directory. Using Get-

DomainController, you can obtain a list of all domain controllers, as objects again of course. This

means that the DN property also directly gives you the LDAP path for the server object, e.g.

CN=CONTOSO-DC1,OU=Domain Controllers,DC=Contoso,DC=local .

DHCP servers authorized in the Active Directory can also be simply listed using the cmdlet Get-

DHCPserver. Finally, get-ADObject outputs a list of the objects in your Active Directory. If no further

parameters are added, all objects are listed; in contrast, Get-ADObject -class user simply lists users

alone. This means you can perform the search exercises in H2 much more easily.

K6: In your virtual test environment, switch over to the Active Directory by simply entering cd

contoso: in Windows PowerShell with PSCX PSSnapin. Entering dir gives you the available

OUs. Now, output a list of all users from the OU Users. Also output all user objects in the

Active Directory using the cmdlet get-ADObject –class user.

As contoso: is a normal PSDrive, you can create new objects using the cmdlet New-Item. To create a

new OU called HR, all you have to do is enter New-Item HR -type OrganizationalUnit in Windows

PowerShell. user or group also works as a -Type. After creating a new object, you can also use get-

itemproperty Objektname to list the object’s properties, e.g. get-itemproperty HR. Using set-

itemproperty, you can also set object properties. For instance, if a user with the name Frankoch

exists, you can change the first name to the value Frank by entering the following command:

set-ItemProperty .\frankoch -name FirstName -value "Frank"

K7: Create a new OU with the name PSCX in the Active Directory. In the OU, create two users

called PSCX1 and PSCX2, as well as a group called PSCX­Group. Change the user first names to

PSCX and list the content of the OU. If you have completed the exercises from chapter H,

now delete all OUs, users and groups under the HR OU created in chapter H.

PSCX does not have its own cmdlets for directly editing users or other objects in the Active Directory.

However, you can do all you need using the item properties. To activate a new account, simply set its

Disabled property to the value $False:

Set-Itemproperty User Disabled $False

If you remember the early days of the Active Directory and compare the time-consuming VB and

ADSI scripts to Windows PowerShell, you’ll surely agree that Windows PowerShell rightfully has the

word power in its name.

41

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

L Partner add-ons: assigning GPOs using SDM Software
You have already been introduced to several interesting add-ons for Windows PowerShell for the

Active Directory. For instance, using Quest’s PSSnapin enables you to simply create and change users

and groups in the Active Directory, while PSCX add-ons let you simply navigate, list, create or delete

users and groups. Thanks to SDM Software, you can now also simply assign group policies and even

modify them using a commercial add-on. At www.sdmsoftware.com, you will find both free cmdlets

that can be used to assign and list existing group policies, as well as the Scripting Toolkit for Windows

PowerShell, which is available subject to a fee. After downloading the free PowerShell add-ons and

installing them, you can launch the relevant PowerShell with the SDM PSSnapin via a link in the Start

menu, and use the new cmdlets.

L1: Download the free SDM Software add-ons for Windows PowerShell at

www.sdmsoftware.com and install them on your test system. Then launch Windows

PowerShell via the SDM link in the Start menu, and output a list of the new PSSnapins.

Display all cmdlets of the PSSnapin. Tip: Take a look back at chapters H and I if you’ve

forgotten how to display information on the PSSnapin. How many new cmdlets can you find?

To display all group policies in the domain, simply call the following command:

Get-SDMgpo *. However, if you would like information on just one group policy, replace the asterisk

with the name of the group concerned. SDM has also released a cmdlet that lists which GPO is linked

to a specific OU. This is done using get-SDMgplink “OUname“

L2: Display all GPOs in your domain. Following this, display the details of the Default Domain

Policy. Which GPO is linked to the “Domain Controllers” OU? Tip: The OU name is specified in

the LDAP syntax, and is thus as follows:

„OU=Domain Controllers,dc=contoso,dc=local“

You can use the cmdlet New-SDMgpo NeuerName to create a new GPO. Using Remove-SDMgpo

NeuerName removes this GPO again. However, a GPO must still always be linked to a group or OU.

This can be done, for instance, using:

Add-SDMLink –name GPOname -scope OU -location -1

The Name is the name of the required group policies, the Scope is the OU to which the group policy

should apply, and the Location is the order of the GPO (it may be the case that you have several

group policies for this OU, so you have to specify which is to be applied first and which last). The

value -1 is the lowest position in the list, no matter how long the list is.

L3: Create a new, empty test GPO and assign this to the HR OU created in chapter K.

Alternatively, first create the HR OU either manually or using Windows PowerShell,

depending on your knowledge.

In the same way as Add-SDMgplink lets you assign a GPO to an OU, remove-SDMgpLink lets you

remove the link again without specifying the –location parameter.

In the SDM cmdlets, you will find other helpful functions such as fuctions to export, backup and

restore GPOs. However, what is missing here is the option of modifying the settings of GPOs. This is

saved for the Scripting Toolkit, which is available for a fee. A trial version can also be found on the

http://www.sdmsoftware.com/
http://www.sdmsoftware.com/

42

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

SDM webseite. Following the simple installation prodecure, you receive a further PSSnapin called

GetgpObjectPSsnapin with one single cmdlet: Get-SDMgpobject

This cmdlet allows you to specifically call a group policy, and assign it to a variable. Using this GPO

reference, you can then set and modify individual settings, and adapt them to suit your

requirements. Although the syntax isn’t complex, it isn’t intuitive either, so you should try out the

following example to gain a better understanding of the basics:

$gpo = Get-SDMgpobject -gponame "gpo://contoso.local/Default Domain Policy"

 -openbyname $true

$stng = $gpo.GetObject("User Configuration/Administrative Templates/Desktop/Active

Desktop/Active Desktop Wallpaper");

$stng.Put("State", [GPOSDK.AdmTempSettingState]"Enabled");

$stng.Put("Wallpaper Name:", "%WINDIR%\Web\Wallpaper\Ascent.jpg");

$stng.Put("Wallpaper Style:", "0");

$stng.Save();

The first call, “-openbyname $true”, enables you to address the GPO by its name instead of its GUID.

In the second line, the desired setting is then selected. Alongside User Configuration, there is also

Computer Configuration and the subfolders in each case, which you will be familiar with from the

graphic console for group policies.

The third line activates the group policy value (“state” set to “enabled“).

Finally, the actual value of the group policy is set (in this example, the desktop background image).

The group policy is then saved.

L4: Download the trial version of the Scripting Toolkit from the SDM website and install the

tool. Then launch the appropriate Windows PowerShell and display the PSSnapin as well as

the new cmdlets of this PSSnapin. Then, copy the command lines for setting a group policy

into Windows PowerShell and execute these lines. Following this, update the group policies

using the command gpupdate /force. To see the new background, you must log out and log

back in again.

As you have learned in the past two chapters, Windows PowerShell and partner add-ons let you open

a whole new chapter of Active Directory administration. Instead of graphic tools, you can now use

effective scripts and therefore ensure a high level of automation. And, alongside lower costs, higher

automation also leads to more time for other tasks. Now doesn’t that sound appealing?

43

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

M Partner add-ons: FullArmor Workflow Studio
Workflow Studio, provided by the company FullArmor (www.fullarmor.com), offers you an

independent tool that is not only a Windows PowerShell add-on, but also provides companies with a

very interesting way of implementing business workflows and process automation. Using a graphic

workflow designer, you can quickly and easily implement various requirements in the area of Server

& Client Provisioning, right through to Active Directory & GPO tasks. On the website, you will find

not only a 30-day free trial version of the Workflow Studio, but also coaching videos and more

detailed product descriptions.

M1: Download the free trial version of the Workflow Studio from FullArmor at

http://www.fullarmor.com, and install the tool on your virtual server. The installation

process is very simple, and pretty much self-explanatory. Then, start the Workflow Studio

using the newly created link in the Start menu. Create a new workflow with the name Test1

in the Start wizard.

Once you have opened the Workflow Studio, you can view the pre-prepared task blocks in the task

bar on the left-hand side. Alongside Active Directory tasks such as creating users or groups, there are

components for working in the file system and sending e-mails, and also generic PowerShell

commands that enable any PowerShell scripts to be executed. Let’s take a look at the entire

procedure using one, very simple example.

M2: Using the mouse, add the task Windows PowerShell / Standrad Cmdlets / Get-Process

from the list on the left-hand side to the working area in the middle, and click on the new

block. On the right-hand side, you can now see the properties of the task block, such as input

and output variables and filters. Change the value for the Process Name Filter from * to P*.

This has the result that only the processes beginning with P are selected. The list that is

output is saved in the Output Variable (which can also be seen on the right-hand side). Copy

the value of this variable to the clipboard. Then add another task: Input/Output / Export to

XML. On the right-hand side, set the value for the output file to C:\Downloads\Scripts\Test1-

out.xml. It is now important that the input value for this task is the output value of the get-

process task so that a link is really established. To ensure this is the case, simply paste the old

Output Variable from the clipboard to the new Input Variable value. Now connect the

individual blocks using the mouse by clicking on the yellow circles and drawing a line to the

next block. To not only view the result in the XML file but also receive a direct output, set the

values Save As HTML and Show HTML in the Export XML task to the value True. At the end,

the result you obtain should look something like this:

http://www.fullarmor.com/
http://www.fullarmor.com/

44

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Launch the script using the green start button in the top-middle of the screen. You should

optain at least the POP3 service as a result.

Of course, this is a very simple example. To obtain a better overview of the possibilities offered by

the Workflow Studio, you will find four more examples in the practice files for this workshop that I

would like to introduce to you in a bit more detail. First, copy the four workflows to your virtual

server and open the workflow file required in each case via the File menu in the Workflow Studio.

M3: Repair low disk space This example is in principle very simple. However, in practice you

will find that logical, precise implementation involves more steps than you first think. The

workflow queries the amount of free space you require and the desired drive. The entries

you make are checked, and then compared with the WMI counter for free disk space. If the

free space is smaller than required, various files in the TEMP directory are deleted, as well as

DUMP files. Finally, the individual strands are united again and the workflow ends. Take your

time and look at the example step by step, then try it out in your test environment.

M4: Restart service via command line This workflow restarts a service. To start off with, a

check is carried out as to whether a service was transmitted as a parameter, otherwise it is

queried by means of a dialog box. If an entry has been made, this is interpreted as a service

and the service is stopped. The system waits 5 seconds before restarting the service. Take

your time and look at the example step by step, then try it out in your test environment.

M5: Create New-User Account This workflow lets you create a new user in the Active

Directory. After queries for information such as names, a password is automatically

generated. If required, the new user can be directly created as a Domain Administrator. If it

is specified that the new user is a manager, this user will receive information on their new

user account via e-mail. Take your time and look at the example step by step, then try it out

in your test environment. Adapt the Active Directory information to your test environment.

As a manager, for instance, you can select the administrator and view the e-mail using

Outlook Express.

45

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

M6: Reset user Password In this last example, I will show you how to reset a user password.

Once the user name (display name with spaces, etc.) has been entered, a new password is

generated and a search is performed for the user’s manager in the Active Directory. The new

password is sent to the manager by e-mail. Take your time and look at the example step by

step, then try it out in your test environment. Adapt the Active Directory information to your

test environment. As a user and manager you can, for instance, use the user created in

exercise M5 whose manager is the administrator, which lets you look at the e-mail in Outlook

Express.

As you will hopefully have seen, the Workflow Studio is very powerful. Once you’ve understood the

logic and procedure involved, you can quickly and easily implement even complex workflows. Using

Windows PowerShell, WMI and .NET, an almost unlimited variety of options are available to you as

possible tasks. Alongside the graphic designer, the Workflow Studio also offers license forms for

servers and clients to enable distributed workflows. The options for creating log files, tracing and

debugging are a huge help in everyday work, and offer one of the quickest ways to create individual,

comprehensive solutions.

46

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

N Access to databases via .NET
One of the most interesting possibilities offered by Windows PowerShell is direct database access.

Creating new tables and reading and writing data are normal daily tasks for a system administrator.

.NET and the possibilities it offers for accessing databases registered in the system can be used to

carry out these tasks not only for the Microsoft SQL Server. However, Microsoft is going yet another

step further with the SQL Server 2008 by creating a script interface that makes access even easier.

Nevertheless, as most readers will in all probability be dealing with an older SQL server version, I

would like to focus on this first. You can download the Microsoft SQL Server 2005 Express Edition for

free at http://www.microsoft.com/downloads/details.aspx?FamilyID=220549b5-0b07-4448-8848-

dcc397514b41&displaylang=en. This database is scaleable up to 4 GB in size and 1 processor.

Following registration, it can be implemented in individual solutions and distributed free of charge.

Although we will be managing the SQL server entirely using scripts in the following exercises, the

graphic interface is sometimes very helpful. You can also download the interface free from Microsoft

at http://www.microsoft.com/downloads/details.aspx?FamilyId=C243A5AE-4BD1-4E3D-94B8-

5A0F62BF7796&DisplayLang=en.

N1: Download the Microsoft SQL Server 2005 Express Edition for free from

http://www.microsoft.com/downloads/details.aspx?FamilyID=220549b5-0b07-4448-8848-

dcc397514b41&displaylang=en and the graphic user interface from

http://www.microsoft.com/downloads/details.aspx?FamilyId=C243A5AE-4BD1-4E3D-94B8-

5A0F62BF7796&DisplayLang=en. Install these two tools in your virtual test environment.

Installation is very simple, and is carried out by calling either the EXE or the MSI file. Accept

the default settings to begin with; on the server, however, in the Feature Selection dialog,

add all Client Components. If you use the computer for tasks other than carrying out these

Windows PowerShell exercises, after installation, you should look for further updates for the

SQL server and install these as well.

Once the SQL server is installed, all you need is a database. This can be set up using .NET. The

following example creates a database with tables for entries from the system event log. This permits,

for instance, analysis, archiving or similar at a later date. Of course, you can also adapt the procedure

to suit your own requirements.

First, you must create a database. To create the database, a connection is set up via .NET to the

required SQL server (which can also be installed on another PC), where the empty database is

created:

$SQLCn = New-Object

System.Data.SqlClient.SqlConnection(“Server=.\SQLEXPRESS;Trusted_Connection=Yes”)

$SQLCn.Open()

$SQLCMD = $SQLCn.CreateCommand()

$SQLCMD.CommandText = “CREATE DATABASE EventDB”

$Result= $SQLCMD.ExecuteNonQuery()

If ($Result) { Write-Host “Anlegen der Datenbank erfolgreich.“ }

$SQLCN.Close()

http://www.microsoft.com/downloads/details.aspx?FamilyID=220549b5-0b07-4448-8848-dcc397514b41&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=220549b5-0b07-4448-8848-dcc397514b41&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=C243A5AE-4BD1-4E3D-94B8-5A0F62BF7796&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=C243A5AE-4BD1-4E3D-94B8-5A0F62BF7796&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=220549b5-0b07-4448-8848-dcc397514b41&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=220549b5-0b07-4448-8848-dcc397514b41&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=C243A5AE-4BD1-4E3D-94B8-5A0F62BF7796&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=C243A5AE-4BD1-4E3D-94B8-5A0F62BF7796&DisplayLang=en

47

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Following this, one or more tables are created in the database, depending on requirements. In this

example, we shall create a table with the typical columns for system log entries. The proecdure here

is similar to that for creating a database:

$SQLCn = New-Object System.Data.SqlClient.SqlConnection(“Server=Contoso-

DC1\SQLEXPRESS;Trusted_Connection=Yes;Database=EventDB”)

$SQLCn.Open()

$SQLCMD = $SQLCn.CreateCommand()

$SQLCMD.CommandText = “CREATE TABLE Events (EvtIX int, EvtTXT varchar(1000), EvtTYPE

varchar(50), EvtTIME datetime, EvtID int, EvtSrc varchar(100))”

$Result= $SQLCMD.ExecuteNonQuery()

If ($Result) { Write-Host “Anlegen der Tabelle erfolgreich.“ }

$SQLCN.Close()

After the table has been created, values can be entered in the database. The 10 most recent entries

from the system log serve as an example here:

$SQLCn = New-Object System.Data.SqlClient.SqlConnection(“Server=Contoso-

DC1\SQLEXPRESS;Trusted_Connection=Yes;Database=EventDB”)

$SQLCn.Open()

Get-eventlog system –newest 10 | foreach-object {

$SQLCMD = $SQLCn.CreateCommand()

$SQLCMD.CommandText = “INSERT Into Events VALUES(@EvtIX, @EvtTXT, @EvtTYPE,

@EvtTIME, @EvtID, @EvtSrc)”

$P = $SQLCMD.Parameters.AddwithValue(“@EvtIX“, $_.Index)

$P = $SQLCMD.Parameters.AddwithValue(“@EvtTXT“, $_.Message)

$P = $SQLCMD.Parameters.AddwithValue(“@EvtTYPE“, $_.Category)

$P = $SQLCMD.Parameters.AddwithValue(“@EvtTIME“, $_.TimeGenerated)

$P = $SQLCMD.Parameters.AddwithValue(“@EvtID“, $_.EventID)

$P = $SQLCMD.Parameters.AddwithValue(“@EvtSrc“, $_.Source)

$Result= $SQLCMD.ExecuteNonQuery()

If ($result –eq $False) { Write-Host “Fehler beim Datenschreiben“ -

}

$SQLCN.Close()

48

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Listing data records is just as easy as writing data (provided you can write SQL statements):

$SQLCn = New-Object System.Data.SqlClient.SqlConnection(“Server=Contoso-

DC1\SQLEXPRESS;Trusted_Connection=Yes;Database=EventDB”)

$SQLCn.Open()

$SQLCMD = $SQLCn.CreateCommand()

$SQLCMD.CommandText = “SELECT * FROM Events”

$Results = $SQLCMD.ExecuteReader()

While ($Results.Read()) {

Write-Host $Results.Item(“EvtIX”) $Results.Item(“EvtTIME”) $Results.Item(“EvtTXT”)

}

$SQLCN.Close()

As you have seen in this chapter, .NET makes working with databases very easy, even though the

actual work with SQL statements is made no easier. In the above examples, even in Windows

PowerShell you must be able to write classic SQL statements and know how to deal with SELECT

statements, and WHERE and JOIN expressions. LINQ, an add-on to the .NET Framework, is an

interesting development in this area for simpler handling of databases. You can find out more about

LINQ and the powerful oppportunities it offers on the Microsoft MSDN website, for instance at

http://msdn2.microsoft.com/en-us/netframework/aa904594.aspx. Its effects on Windows

PowerShell are as yet unknown.

While LINQ is aimed more at developers of database applications, it is also good for database

administrators to know that a scripting tool comes with the SQL Server 2008, which also helps make

life easier. You can read more about this in the SQL Server 2008 documentation, for instance under

http://www.microsoft.com/sql/techinfo/whitepapers/sql_2008_manageability.mspx.

http://msdn2.microsoft.com/en-us/netframework/aa904594.aspx
http://www.microsoft.com/sql/techinfo/whitepapers/sql_2008_manageability.mspx

49

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

SOLUTIONS TO EXERCISES

Solution scripts for the exercises in this booklet
A1

WindowsServer2003-KB926139-x86-ENU.exe /?

WindowsServer2003-KB926139-x86-ENU.exe /quiet (/norestart)

The /norestart parameter is optional; even if no restart is required for the installation of Windows

PowerShell, you can set it to server systems just to make sure. However, you need to remember to

perform the restart if necessary.

B1

Get-executionpolicy

cd hklm:

cd HKLM:\software\Microsoft\PowerShell\1\ShellIds

Get-ItemProperty .\Microsoft.PowerShell

The desired registry key is not available as standard, which is why the default value, Restricted,

automatically applies as being set.

B2

Set-Executionpolicy RemoteSigned

Only once the cmdlet Set-ExecutionPolicy is used is the registry key set and then adopts the relevant

value; in the example, this value is RemoteSigned.

B4

The group policy sets a different registry key to the cmdlet Set-ExecutionPolicy. For this reason, a

warning message appears if a group policy exists and a change to the security environment is carried

out via cmdlet. The group policy value always takes precedence. However, the registry key from B1

remains unchanged.

The group policy administrative template sets the following registry key:

HKLM:\Software\Policies\Microsoft\Windows\PowerShell

50

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

C1

The following script analyzes a folder anc leans up the files

First we create a new PS drive to minimize the file path and to shorten the script

Out-NUL avoids any screen output

New-PSDrive -name FK -PSProvider FileSystem -root C:\Dwonloads\Files | out-null

Now we list all files and sort them by their extensions. Each extension is selected once

and for each extension, we create an own folder to store later on the files

We use the well known MD command from the old DOS days instead of new-item

new-item is longer but knows the –force switch to avoid erros in case the folder exists

So pick your command as you like!

get-childitem fk:\ | sort-object extension -unique | foreach-object {

 MD ("fk:\restored_" + $_.extension) | Out-Null }

Now that we have the folders, we simply move the files to the correct final location

But we need toskip the folder objects and leave them where they are

get-childitem fk:\ | where-object {$_.mode -notmatch "d"} | foreach-object {

move-item $_.fullname ("fk:\Restored_" + $_.extension) }

Done with the script

C2

The PSDrive simply shortens the PowerShell command line, that’s it.

New-PSDrive -name FK -PSProvider FileSystem -root c:\Downloads\files | Out-Null

get-childitem fk:\ –recurse | where-object {$_.mode -notmatch "d"} | foreach-object {

$_.isreadonly = 0

}

The above script is called by a batch file containing the following line (change the path to suit the

script where necessary):

powershell.exe c:\Downloads\Scripts\C2.ps1

C1-Prepare.ps1

Dir C:\Downloads\Files -Recurse | where-object {$_.mode -notmatch "d"} | sort extension

-unique | foreach { $_.IsReadOnly = $False; $_.LastAccessTime = (get-date).AddYears(-1) }

dir C:\Downloads\Files -Recurse | where-object {$_.mode -notmatch "d"} | sort extension

-desc -unique|foreach{$_.IsReadOnly = $False;$_.LastAccessTime (get-date).AddYears(-2)}

51

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

C3

The scripts starts here. First check: do we have 3 parameters?

If ($Args.count –ne 3) {

 write-warning “call the script with 3 parameter: source target date-in-months”

} else {

If (test-path $Args[0]) {

 If (test-path $Args[1]) {

 $CheckDate = ((Get-date).AddMonths(- $Args[2])).ToOADate()

 Dir $args[0] -recurse | where-object {$_.mode -notmatch "d"} | foreach-object {

 if (($_.LastAccessTime).ToOADate() -lt $CheckDate) {

 $_.name + " " + (($_.LastAccessTime))

 }

 }

} else { Write-Warning “Target path does not exists” -

} else {Write-Warning (“Source path does not exists: ” + $Args*0+) -

}

C4

The scripts starts here. First check: do we have 3 parameters?

If ($Args.count –ne 3) {

 write-warning “call the script with 3 parameter: source target date-in-months”

} else {

If (test-path $Args[0]) {

 If (test-path $Args[1]) {

 $CheckDate = ((Get-date).AddMonths(- $Args[2])).ToOADate()

 $MyPath = $Args[1]

 Dir $args[0] -recurse | where-object {$_.mode -notmatch "d"} | foreach-object {

 if (($_.LastAccessTime).ToOADate() -lt $CheckDate) {

 $myACL = get-Acl $_.FullName

 $MyName = $MyPath + "\" + $_.Name

 Move-Item $_.FullName $MyPath

 Set-Acl $Myname $myACL

 }

 }

} else { Write-Warning “Target path does not exists” -

} else {Write-Warning (“Source path does not exists: ” + $Args*0+) -

}

52

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

C5

The scripts starts here. First check: do we have 3 parameters?

If ($Args.count –ne 3) {

 write-warning “call the script with 3 parameter: source target date-in-months”

} else {

If (test-path $Args[0]) {

 If (test-path $Args[1]) {

 $CheckDate = ((Get-date).AddMonths(- $Args[2])).ToOADate()

 $MyPath = $Args[1]

 Dir $args[0] -recurse | where-object {$_.mode -notmatch "d"} | foreach-object {

 if (($_.LastAccessTime).ToOADate() -lt $CheckDate) {

 $myACL = get-Acl $_.FullName

 $MyName = $MyPath + "\" + $_.Name

 Move-Item $_.FullName $MyPath

Bes ure that the path to xxMKLink.exe is correct!

 .\xxMkLink.exe $_.FullName $Myname /q

 Set-Acl $Myname $myACL

 $Myname = $_.FullName + ".lnk"

 Set-Acl $Myname $myACL

 }

 }

} else { Write-Warning “Target path does not exists” -

} else {Write-Warning (“Source path does not exists: ” + $Args*0+) -

}

D1

CD HKL:

CD HKLM:\Software\Microsoft

Dir W*

Displaying registry keys works in exactly the same way as listing files in the file system.

D2

CD HKL:

CD HKLM:\Software\Microsoft

dir W*R*\W*

Displaying registry keys works in exactly the same way as listing files in the file system.

53

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

D3

New-Item –path “HKLM:\Software“ –Name “Contoso“

New-itemproperty –literalpath “HKLM:\Software\Contoso“ –Name “Appname“ –Value

 ”Contoso CRM” –type string

Remove-item .\contoso

Registry keys and values can be deleted very easily by deleting the top registry key.

D4

Cd HKLM:\Software\Microsoft\Windows\CurrentVersion

Get-itemproperty run

New-itemproperty –literalpath

“HKLM:\Software\Microsoft\Windows\CurrentVersion\Run“ –Name “Notepad“ –Value

 ”c:\windows\notepad.exe” –type string

When you log in again, Notepad should automatically start. Ideally, you should replace the path

c:\Windows with the environment variable %windir%

E1

Get the computer name with the help of WMI

$Name = (get-wmiobject Win32_Computersystem).name

The HTML script comes from the first Windows PowerShell workshop

where you find the comments, too

get-service | ConvertTo-Html -Title "Get-Service" -Body "<H2>The result of get-

service</H2> " -Property Name,Status | foreach {

if($_ -like "*<td>Running</td>*"){

$_ -replace "<tr>", "<tr bgcolor=green>"

} elseif ($_ -like "*<td>Stopped</td>*"){

$_ -replace "<tr>", "<tr bgcolor=red>"

-else , $_- - > (“fk:\” + $name + “.html”)

E2a

[void][System.reflection.assembly]::LoadWithPartialName("System.Windows.Forms")

$form = new-object Windows.Forms.Form

$button = new-object Windows.Forms.Button

$button.add_click({$form.close()})

$form.controls.add($button)

$form.ShowDialog()

54

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

E2b

void][System.reflection.assembly]::LoadWithPartialName("System.Windows.Forms")

$form = new-object Windows.Forms.Form

$button = new-object Windows.Forms.Button

$form.Text = "My First Form"

$button.text="Push Me!"

$button.Dock="fill"

$button.add_click({$form.close()})

$form.controls.add($button)

$form.ShowDialog()

E3

[void][System.reflection.assembly]::LoadWithPartialName("System.Windows.Forms")

$form = new-object System.Windows.Forms.Form

$DataGridView = new-object System.windows.forms.DataGridView

$Form.Text = "My First Datagrid"

$array= new-object System.Collections.ArrayList

$array.AddRange(@(get-service | write-output))

$DataGridView.DataSource = $array

$DataGridView.Dock = "fill"

$DataGridView.AllowUsertoResizeColumns=$True

$form.Controls.Add($DataGridView)

$form.showdialog()

E4

The only code changes are highlighted

[void][System.reflection.assembly]::LoadWithPartialName("System.Windows.Forms")

$form = new-object System.Windows.Forms.Form

$DataGridView = new-object System.windows.forms.DataGridView

$Form.Text = "My First Datagrid"

$array= new-object System.Collections.ArrayList

$array.AddRange(@(get-service | sort-object Status | write-output))

$DataGridView.DataSource = $array

$DataGridView.Dock = "fill"

$DataGridView.AllowUsertoResizeColumns=$True

$form.Controls.Add($DataGridView)

$form.showdialog()

55

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

E4

The only code changes are highlighted

 [void][System.reflection.assembly]::LoadWithPartialName("System.Windows.Forms")

$form = new-object System.Windows.Forms.Form

$DataGridView = new-object System.windows.forms.DataGridView

$Form.Text = "My First Datagrid"

$array= new-object System.Collections.ArrayList

$array.AddRange(@(get-process | sort-object company | write-output))

$DataGridView.DataSource = $array

$DataGridView.Dock = "fill"

$DataGridView.AllowUsertoResizeColumns=$True

$form.Controls.Add($DataGridView)

$form.showdialog()

E5

Create a list with all file extensions

$ext = Get-ChildItem * -recurse | foreach {[System.io.path]::GetExtension($_) }

Group the extensions and sort them by their numbers (count)

$ext | where { $_ -ne “”- | group | sort count

E6

Get the no.1 extension

($ext | where { $_ -ne “”- | group | sort count | select -last 1).Name

E7

$newrights = [System.Security.AccessControl.FileSystemRights+”Read, Write”

$InheritanceFlag = [System.Security.AccessControl.InheritanceFlags]::None

$PropagationFlag = [System.Security.AccessControl.PropagationFlags]::None

$Typ =[System.Security.AccessControl.AccessControlType]::Allow

$ID = new-object System.Security.Principal.NTAccount(“Contoso\Administrator”)

$SecRule =new-object System.Security.AccessControl.FileSystemAccessRule($ID,

$newrights, $InheritanceFlag, $PropagationFlag, $Typ)

$myACL = get-acl „.\c1-prepare.ps1“

$myACL.AddAccessRule($SecRule)

Set-ACL “.\c1-prepare.ps1“ $myACL

56

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

E8

Send email with .NET

This example will NOT work by design!

$Mail = New-Object System.Net.Mail.MailMessage

$Mail.Sender = “Info@contoso.local”

$Mail.Subject = “PowerShell information from ” + (dir env:\Computername).Value

$Mail.Body = “Alarm on server “ + (dir env:\Computername).Value + “ at “ + (get-date)

$Mail.To = “Administrator@contoso.local”

E9

Send email with .NET

$mailserver = “contoso-dc1.contoso.local”

$Mail = New-Object System.Net.Mail.MailMessage(“Info@contoso.local”,

“administrator@contoso.local”)

$Mail.Subject = “PowerShell information from ” + (dir env:\Computername).Value

$Mail.Body = “Alarm on server “ + (dir env:\Computername).Value + “ at “ + (get-date)

$Mail.IsBodyHTML = $False

$MailClient = New-Object System.Net.Mail.SmtpClient

$MailClient.Host = $Mailserver

$MailClient.Send($Mail)

E10

Send email and attachment with .NET

$mailserver = “contoso-dc1.contoso.local”

$Mail = New-Object System.Net.Mail.MailMessage(“Info@contoso.local”,

“administrator@contoso.local”)

$Mail.Subject = “PowerShell information from ” + (dir env:\Computername).Value

$Mail.Body = “Alarm on server “ + (dir env:\Computername).Value + “ at “ + (get-date)

$Mail.IsBodyHTML = $False

$Attached = New-Object System.Net.Mail.Attachment(“C:\boot.ini”)

$Mail.Attachments.Add($Attached)

$MailClient = New-Object System.Net.Mail.SmtpClient($Mailserver)

$MailClient.UseDefaultCredentials = $False

$MailClient.Credentials = New-Object System.Net.NetworkCredential(“contoso\Info”,

“Pass1word”)

$MailClient.Send($Mail)

57

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

E11

$Outlook = New-Object .-com Outlook.Application

$Inbox = $Outlook.Session.GetDefaultFolder(6)

$Inbox.items | where { $_.Unread }| foreach { write-host $_.Subject }

F1

dir $env:windir*.log | select-string error | format-table path,linenumber –autosize

The parameter –list always lists just the first appearance of the string; if the parameter is not set, all

positions of the string will be output.

F2

Get-eventlog “Windows PowerShell” –newest 10

Get-eventlog “Windows PowerShell” | group EventID | sort count –descending

F3

$a = new-object –type system.diagnostics.eventlog –argumentlist System

Source can be chosen randomly as you like, but maybe use something appropreatly

$a.source = “Windows PowerShell Labs”

get-service | where { $_.status -eq "Stopped"} | select -first 5 | foreach {

$a.writeentry(“Service stopped: ”+ $_.Name,“Information“)

}

get-eventlog System -newest 10

G1

$path = “” + @(Join-path $env:windir "MSAgent\chars\peedy.acs")

if ((test-path $path) -eq $false) {

 write-host "Please download Peedy from www.microsoft.com/msagents"

} else {

$AgentControl = New-Object -com agent.control.2

$AgentControl.connected = $true

[void]$AgentControl.Characters.load("Peedy", $path)

$Peedy = $AgentControl.Characters.Item("Peedy")

[Void]$Peedy.Show()

[Void]$Peedy.moveto(300,300)

[void]$Peedy.Speak("I am ready, and you?")

}

58

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

G2

$PC = New-Object -com agent.control.2

$pc.connected = $true

[void]$pc.Characters.load("Peedy","C:\windows\MSAgent\chars\Peedy.acs")

$Peedy = $pc.Characters.Item("Peedy")

$Display = Get-WmiObject -class Win32_DesktopMonitor

check if multiscreen display is enabled:

if (($display | measure-object).count -gt 1) {

 $height = $display[0].ScreenHeight - $peedy.height

 $width = $display[0].ScreenWidth - $peedy.width} else {

 $height = $display.ScreenHeight - $peedy.height

 $width = $display.ScreenWidth - $peedy.width }

[void]$peedy.show()

[Void]$Peedy.moveto(0,0)

Start-sleep -seconds 3

[Void]$Peedy.moveto(0,$height)

Start-sleep -seconds 3

[Void]$Peedy.moveto($width,$height)

Start-sleep -seconds 3

[Void]$Peedy.moveto($width,0)

Start-sleep -seconds 3

[Void]$Peedy.moveto(0,0)

G3

Creation of a list of all Peedy animation sequences by outputting the AnimationNames property of

the object: $Peedy.AnimationNames

Creation of a list of all animation sequences through simply calling and playing all sequences using a

“for-each” loop and outputting the name of the sequence concerned:

$Peedy.AnimationNames | foreach {

 $_

[void]$Peedy.Play($_)

 Start-sleep –seconds 5

 [void]$Peedy.StopAll()

}

59

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

G4

System monitoring using Peedy. To start off with, the following script creates a Peedy instance,

presents Peedy on the screen, creates a list of five stopped services and outputs this list via Peedy:

$PC = New-Object -com agent.control.2

$pc.connected = $true

[void]$pc.Characters.load("Peedy","C:\windows\MSAgent\chars\Peedy.acs")

$Peedy = $pc.Characters.Item("Peedy")

[void] $peedy.show()

[void]$peedy.moveto(100,300)

[void]$peedy.Play("GetAttention")

Start-sleep –seconds 2

[void]$Peedy.StopAll()

Get-service | where { $_.status –eq “Stopped” - | select-object –first 5 | foreach {

[void] $Peedy.Speak($_.Name)

Start-sleep –seconds 5

 [void]$Peedy.StopAll()

}

[void]$peedy.Hide()

G5

Function out-peedy {

$PC = New-Object -com agent.control.2

$pc.connected = $true

[void]$pc.Characters.load("Peedy","C:\windows\MSAgent\chars\Peedy.acs")

$Peedy = $pc.Characters.Item("Peedy")

 [void] $peedy.show()

[void]$peedy.moveto(100,300)

$text = “” + $Args*0+

 [void]$peedy.Speak($text)

Start-sleep –seconds 5

 [void]$Peedy.StopAll()

[void]$peedy.Hide()

}

60

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

G6

Function out-peedy {

$PC = New-Object -com agent.control.2

$pc.connected = $true

[void]$pc.Characters.load("Peedy","C:\windows\MSAgent\chars\Peedy.acs")

$Peedy = $pc.Characters.Item("Peedy")

 [void] $peedy.show()

[void]$peedy.moveto(100,300)

$text = “” + $Args*0+

If ($Args.Count –gt 1) {

 If ($Args[1] -match “-q”) , *void+$peedy.Think($text)

} else { [void]$peedy.Speak($text) }

} Else { [void]$peedy.Speak($text) }

Start-sleep –seconds 5

 [void]$Peedy.StopAll()

[void]$peedy.Hide()

}

G7

Outlook 2007 and the inbox (folder 6)

$Outlook = New-Object -com Outlook.Application

$Inbox = $Outlook.Session.GetDefaultFolder(6)

$Inbox.items | where { $_.Unread }| foreach { out-peedy $_.Subject }

H1

$objDomain = *ADSI+“LDAP://dc=contoso,dc=local”

$objOU = $objDomain.Create(“organizationalUnit”, “ou=HR”)

$objOU.SetInfo()

$objOU = *ADSI+“LDAP://ou=hr,dc=contoso,dc=local“

$objGrp = $objOU.Create(„group“, „cn=HRGroup“)

$objGrp.Put(„sAMAccountName“, „HRGroup“)

$objGrp.SetInfo()

$objUser = $objOU.Create(„user“, „cn=frankoch“)

$objUser.Put(„sAMAccountName“, „frankoch“)

$objuser.SetInfo()

$objUser2 = $objOU.Create(„user“, „cn=frankoch2“)

$objUser2.Put(„sAMAccountName“, „frankoch2“)

$objuser2.SetInfo()

61

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

H2

$objUser = *ADSI+”LDAP://cn=frankoch,ou=HR,dc=contoso,dc=local”

$objUser.SetPassword(“Pass1word“)

$objUser.psbase.InvokeSet("AccountDisabled",$false)

$objUser.SetInfo()

$objUser = *ADSI+”LDAP://cn=frankoch2,ou=HR,dc=contoso,dc=local”

$objUser.SetPassword(“Pass1word“)

$objUser.psbase.InvokeSet("AccountDisabled",$false)

$objUser.SetInfo()

H4

$ADDomain = *ADSI+“LDAP://dc=contoso,dc=local”

$ADSearch = New-Object System.DirectoryServices.DirectorySearcher

$ADSearch.SearchRoot = $ADDomain

definition des Filters: nur Computer,Suche nach Namen

$ADSearch.Filter = „(objectCategory=user)“

$ADSearch.PropertiesToLoad.Add(“name”)

$ADSearch.PropertiesToLoad.Add(“description”)

$ergebnis = $ADSearch.FindAll()

Zur Ausgabe wenden wir einen Trick an, um nur den Namen auszugeben

Foreach ($erg in $ergebnis) {

 $ADuser = $erg.Properties

 $ADUser.name + “ “ + $ADUser.description

}

H5

Get-command –pssanpin Quest.ActiveRoles.ADManagement

In order to ensure that the Quest add-ons are always available, you must enter the call Add-PSSnapIn

Quest.ActiveRoles.ADManagement in one of the profile files.

H6

Creating a new user:

New-QADUser -name “Frankoch3” -organizationalUnit “OU=HR,DC=contoso,DC=local”

-samAccountName “Frankoch3” -UserPassword “Pass1word”

Creating a new group:

new-qadGroup -name "HR Group2" -organizationalUnit "OU=HR,DC=contoso,DC=local" -

samAccountName "hrgroup2" -Grouptype "Security" -Groupscope "Global"

Adding a user to a group:

add-QADGroupMember -identity “CN=HR Group2,OU=HR,DC=contoso,DC=local” -member

“Contoso\frankoch3”

62

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

H7

import-csv h7-users.csv | foreach { new-QADuser -name $_.Name -sam $_.sam

-password $_.password -Org $_.OU }

I1

get-process | sort cpu | select -last 10 | .\out-chart.ps1 processname CPU

I2

Get-pssnapins

Add-pssnapin PowerGadgets

I3

Get-command –pssnapin PowerGadgets

get-process | sort cpu | select name, cpu -last 10 | out-chart

I4

Outputing file extensions

dir *.* | group Extension | out-chart -Values Count -Label Name

dir *.* | sort length | select name, length –last 10 | out-chart

I5

To obtain a return value by double-clicking, all you need to do is continue the pipeline after Out-

Chart:

get-process | sort cpu | select name, cpu -last 10 | out-chart | foreach { $_ }

63

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Script: Out-Chart.ps1
param($xaxis, $yaxis)

begin {

 $categories = @()

 $values = @()

 $chart = new-object -com OWC11.ChartSpace.11

 $chart.Clear()

 $c = $chart.charts.Add(0)

 $c.Type = 3

 $c.HasTitle = $true

 $c.Title.Caption = "Chart generated on $(get-date)"

 $series = ([array] $chart.charts)[0].SeriesCollection.Add(0)

}

Process {

$categories += $_.$xaxis

 $values += $_.$yaxis *1

}

End {

 $series.Caption = "chart"

 $series.SetData(1, -1, $categories)

 $series.SetData(2, -1, $values)

 $filename = (resolve-path .).Path + "\chart.jpg"

 $chart.ExportPicture($filename, "jpg", 800, 500)

 invoke-item $filename

}

I cannot provide you with a precise explanation of this script in this exercise booklet. However,

chapter 7.4.2 of the Windows PowerShell book by Bruce Payette explains the ideas in full. Here are

just a few tips:

 In the Param line, the script arguments are defined and set, provided that they are not

further defined when the script is called.

 The Begin area is for processing commands before the transmitted items are even taken into

account, i.e. it is a kind of initialization. $Script variables only exist in the context of the

script, and are used to more clearly define the chart item.

 The Process area is where the individually transmitted items are processed.

 The End area allows final tasks to be carried out without the transmitted objects.

 The $values must be multiplied by 1 to enable clean output of decimal figures. You don’t

believe me? Try it without!

64

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

J1

Get-WmiObject -list | where {$_ -match "win32_n"}

Get-WmiObject -list | where {$_ -match "win32_n"} | measure-object

J2

Get-WmiObject -Class "Win32_NetworkAdapterConfiguration" -Filter IPEnabled=True |

format-table index, IPAddress, Description -autosize

Get-WmiObject -Class "Win32_NetworkAdapter" | get-member

Get-WmiObject -Class "Win32_NetworkAdapter" | foreach{ $_.Disable() }

J3

$WC = New-Object net.webclient

$Global:BatSeite = $wc.downloadstring(“https://www.dellbatteryprogram.com/“)

$R = *regex+” (*A-Z0-9][A-Z0-9][0-9][0-9][0-9+)”

$Matches = $R.Matches($Global:BatSeite)

Write-Host “Anzahl gelisteter Akku-Typen: $($Matches.Count) “

$Global:BatterieListe = $Matches | ForEach { $_.Groups[1].Captures[0].value }

Get-WMIObject –Class Win32_Battery | ForEach { $BatName = $_.name; break }

If ((select-string –pattern $BatName -InputObject $BatterieListe –Quiet) -eq $True) {

 BatterieListe | Where {$BatName –match $_ } | Foreach {

 Write-Warning “Betroffen:Akku $Name – Übereinstimmungen: *$_*`n“ - -

K1

Get-pssnapin

get-command -PSSnapin PSCX

(get-command -PSSnapin PSCX | measure-object).count

Get-help *pscx

Get-help about_PSCX

65

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

K2

The scripts starts here. First check: do we have 3 parameters?

If ($Args.count –ne 3) {

 write-warning “call the script with 3 parameter: source target date-in-months”

} else {

If (test-path $Args[0]) {

 If (test-path $Args[1]) {

 $CheckDate = ((Get-date).AddMonths(- $Args[2])).ToOADate()

 $MyPath = $Args[1]

 Dir $args[0] -recurse | where-object {$_.mode -notmatch "d"} | foreach-object {

 if (($_.LastAccessTime).ToOADate() -lt $CheckDate) {

 $myACL = get-Acl $_.FullName

 $MyName = $MyPath + "\" + $_.Name

 Move-Item $_.FullName $MyPath

#Statt xxMKLink verwenden wir nun das PSCX Cmdlet New-Link

 New-Link $_.FullName $Myname /q

 Set-Acl $Myname $myACL

 $Myname = $_.FullName + ".lnk"

 Set-Acl $Myname $myACL

 }

 }

} else { Write-Warning “Target path does not exists” -

} else {Write-Warning (“Source path does not exists: ” + $Args*0+) -

}

K3

Aufruf von Outlook 2007 und des Posteingangs (Folder 6)

$Outlook = New-Object -com Outlook.Application

$Inbox = $Outlook.Session.GetDefaultFolder(6)

$Inbox.items | where { $_.Unread }| foreach { out-speech $_.Subject }

K4

Ping-Host localhost

Ping-Host localhost –q | get-member

(Ping-Host localhost –q).loss

K5

Send-SmtpMail -SmtpHost contoso-DC1.Contoso.local -to Administrator@contoso.local

-from info@contoso.local -subject “PowerShell Information von ” + (dir

env:\Computername).Value – body “Serveralarm auf “ + (dir env:\Computername).Value +

“ um “ + (get-date)

66

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

K6

cd contoso: # Vergessen Sie nicht den Doppelpunkt!

CD \; Dir users

Get-ADObject -class user

K7

New-Item PSCX –type OrganizationalUnit

cd PSCX

New-Item PSCX1 –type User

New-Item PSCX2 –type User

New-Item PSCX-Group –type Group

Get-Itemproperty Pscx1 # der Vorname ist in der Eigenschaft Surname gespeichert

Set-ItemProperty PSCX Surname „Frank“

Cd \; Cd HR

Dir

Del *

Dir

L1

Get-pssnapin

get-command -PSSnapin SDMGPOSnapIn

(get-command -PSSnapin SDMGPOSnapIn | measure-object).count

L2

get-sdmgpo *

get-sdmgposecurity "Default Domain Policy"

get-sdmgplink "OU=Domain Controllers,dc=contoso,dc=local"

L3

New-SDMgpo "Test-GPO"

Add-SDMgplin -name Test-GPO -scope "OU=HR, DC=contoso, DC=local" -Location -1

67

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

L4

Get-pssnapin

get-command -pssnapin getgpobjectpssnapin

$gpo = Get-SDMgpobject -gponame "gpo://contoso.local/Default Domain Policy" -

openbyname $true

$stng = $gpo.GetObject("User Configuration/Administrative Templates/Desktop/Active

Desktop/Active Desktop Wallpaper");

$stng.Put("State", [GPOSDK.AdmTempSettingState]"Enabled");

$stng.Put("Wallpaper Name:", "%WINDIR%\Web\Wallpaper\Ascent.jpg");

$stng.Put("Wallpaper Style:", "0");

$stng.Save();

Following this, update the group policies, log out and log back in again:

Gpupdate /force

N

Create new Database

$SQLCn = New-Object System.Data.SqlClient.SqlConnection(

 "Server=.\SQLEXPRESS;Trusted_Connection=Yes")

$SQLCn.Open()

$SQLCMD = $SQLCn.CreateCommand()

$SQLCMD.CommandText = “CREATE DATABASE EventDB”

$Result= $SQLCMD.ExecuteNonQuery()

If ($Result) { Write-Host "Anlegen der Datenbank erfolgreich." }

$SQLCN.Close()

Create new Table

$SQLCn = New-Object System.Data.SqlClient.SqlConnection("Server=

 Contoso-DC1\SQLEXPRESS;Trusted_Connection=Yes;Database=EventDB")

$SQLCn.Open()

$SQLCMD = $SQLCn.CreateCommand()

$SQLCMD.CommandText = "CREATE TABLE Events (EvtIX int, EvtTXT varchar(1000), EvtTYPE

 varchar(50), EvtTIME datetime, EvtID int, EvtSrc varchar(100))"

$Result= $SQLCMD.ExecuteNonQuery()

If ($Result) { Write-Host "Anlegen der Tabelle erfolgreich." }

$SQLCN.Close()

68

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Create new row / entry

$SQLCn = New-Object System.Data.SqlClient.SqlConnection(“Server=

 Contoso-DC1\SQLEXPRESS;Trusted_Connection=Yes;Database=EventDB”)

$SQLCn.Open()

Get-eventlog system –newest 10 | foreach-object {

 $SQLCMD = $SQLCn.CreateCommand()

 $SQLCMD.CommandText = "INSERT Into Events VALUES(@EvtIX, @EvtTXT,

 @EvtTYPE, @EvtTIME, @EvtID, @EvtSrc)"

 $P = $SQLCMD.Parameters.AddwithValue("@EvtIX", $_.Index)

 $P = $SQLCMD.Parameters.AddwithValue("@EvtTXT", $_.Message)

 $P = $SQLCMD.Parameters.AddwithValue("@EvtTYPE", $_.Category)

 $P = $SQLCMD.Parameters.AddwithValue("@EvtTIME", $_.TimeGenerated)

 $P = $SQLCMD.Parameters.AddwithValue("@EvtID", $_.EventID)

 $P = $SQLCMD.Parameters.AddwithValue("@EvtSrc", $_.Source)

 $Result= $SQLCMD.ExecuteNonQuery()

 If ($result –eq $False) { Write-Host "Fehler beim Datenschreiben" } }

$SQLCN.Close()

Read row / entry

$SQLCn = New-Object System.Data.SqlClient.SqlConnection("Server=

 Contoso-DC1\SQLEXPRESS;Trusted_Connection=Yes;Database=EventDB")

$SQLCn.Open()

$SQLCMD = $SQLCn.CreateCommand()

$SQLCMD.CommandText = "SELECT * FROM Events"

$Results = $SQLCMD.ExecuteReader()

While ($Results.Read()) {

Write-Host $Results.Item("EvtIX") $Results.Item("EvtTIME")

 $Results.Item("EvtTXT")

}

$SQLCN.Close()

69

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

More sample scripts
X1 # List of all files from all subfolders with statistics concerning:

 File type (.doc, .TXT. etc.)

 Number of files per type (5, 10, etc.)

 Overall size of all files of this type (1345 KB)

Script content:

New-PSDrive -name FK -PSProvider FileSystem -root c:\Downloads\Files | out-null

get-childitem FK:\ -recurse | where-object {$_.mode -notmatch "d"} |

Group-Object extension | foreach { write-host $_.name, $_.count, (Get-childitem ("FK:*"+

$_.name) -recurse | measure-object length –sum).sum }

X2 # Saving the result from X1 in Excel instead of on the screen:

New-PSDrive -name FK -PSProvider FileSystem -root c:\downloads\files | out-null

$a = New-Object -comobject Excel.Application

$b = $a.Workbooks.Add()

$c = $b.Worksheets.Item(1)

$c.Cells.Item(1,1) = "Dateityp"

$c.Cells.Item(1,2) = "Anzahl"

$c.Cells.Item(1,3) = "Gesamtgrösse"

$i = 2

get-childitem FK:\ * -recurse | where-object {$_.mode -notmatch "d"} |

Group-Object extension | foreach {

 $c.cells.item($i,1) = $_.Name

 $c.cells.item($i,2) = $_.count

 $c.cells.item($i,3) = (Get-childitem ("FK:*"+ $_.name) -recurse | measure-object

length –sum).sum

 $i = $i + 1

}

$b.SaveAs("C:\Downloads\Scripts\Report-X2.xlsx")

$a.quit()

70

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

ANNEX:
PREPARING THE TEST ENVIRONMENT

The test environment for this Windows PowerShell exercise booklet consists of a Windows Server

2003, configured as a domain controller. If you have no Windows server available for use, you can

download a virtual hard drive free from Microsoft, which you can also use on the (also free) VirtualPC

2007 (or Virtual Server 2005 R2). Please note that your PC must have at least 1 GB of RAM available.

You can use this test environment for 30 days. Entering the valid server product key (e.g. from your

TechNet or MSDN subscription) will enable you to use the virtual environment until summer 2008.

For general queries on using VirtualPC, please also read

http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx

Download link for VirtualPC 2007:

http://www.microsoft.com/downloads/details.aspx?displaylang=de&FamilyID=04d26402-3199-

48a3-afa2-2dc0b40a73b6

Download link for virtual hard drive for Windows Server 2003:

http://www.microsoft.com/downloads/details.aspx?FamilyID=77f24c9d-b4b8-4f73-99e3-

c66f80e415b6&DisplayLang=en (two downloads with a total data volume of around 1.5 GB!)

First install VirtualPC 2007 and then unzip the virtual harddisk for the Windows Server 2003 by

starting the EXE file. Once all files are unzipped, launch the virtual environment. You can do this most

easily by double-clicking on the unzipped WS03R2EE.vmc file.

You must now make one setting on the VirtualPC to use the test environment as required. Set up two

network adapters for your new virtual PC. Set virtual network adapter 1 to Shared networking (NAT),

and adapter 2 to the value Local Only (under Settings for the WS03R2EE PC):

http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx
http://www.microsoft.com/downloads/details.aspx?displaylang=de&FamilyID=04d26402-3199-48a3-afa2-2dc0b40a73b6
http://www.microsoft.com/downloads/details.aspx?displaylang=de&FamilyID=04d26402-3199-48a3-afa2-2dc0b40a73b6
http://www.microsoft.com/downloads/details.aspx?FamilyID=77f24c9d-b4b8-4f73-99e3-c66f80e415b6&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=77f24c9d-b4b8-4f73-99e3-c66f80e415b6&DisplayLang=en

71

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Configuring the test environment

First, set up an Active Directory for working in the test environment. To do this, log onto the virtual

server (details of how to do this can be found in the Readme file for the download). To use the

exercises and solution scripts from this exercise booklet without making any changes to them, you

must change the name of your server to Contos-DC1. You can do this in the Start menu by clicking on

My Computer with the right mouse button and selecting Properties. On the Computer Name tab,

click on the Change button and enter the new name. You must then restart your virtual server. After

restarting, log back onto the server to set up the Active Directory. First, assign a fixed IP address to

the second network adapter of your test system (the network environment containing the network

adapters can be found under Control Panel in the Start menu). You can assign, for instance, 10.0.0.1

as a fixed IP address.

You now need to install the Active Directory. To do this, click on “RUN…” in the server Start menu.

Enter DCPROMO and click on OK. The Active Directory installation wizard is launched, and will ask

you for various pieces of information. Please enter the following answers on the corresponding entry

screens:

 Create a “New Domain Controller” in the domain“Domain in a new Forest”.

 Select Contoso.local as the DNS name and CONTOSO as the NetBios name.

 Accept the suggested file paths.

 Let the wizard install and configure the DNS server (default setting).

 Confirm the default value for Windows compatibility.

 Select (and make a note of!) a password of your choice to be used as a restore password.

If you are asked for the path for the installation files, they are located on the C: drive in the directory

labelled “WindowsInstallationFiles\i386” on the virtual hard drive. Depending on the network

configuration, you may also need to confirm that you wish to work with dynamic IP addresses in your

test environment, even if this is NOT the recommended configuration for a live Active Directory.

Installation is completed by rebooting. Following the reboot, log back in again. Close all windows that

have opened automatically upon login.

You must now install the .NET Framework 2.0. This can be done in several ways; here, we will use

Microsoft Update. First of all, deactivate the “Enhanced Security Configuration” via the menu item

“Add / Remove Windows Components” in the Control Panel. However, beware – this setting is not

recommended for live servers, as it subjects your server systems to unnecessary risks. Only use this

setting in your virtual test environment. Then, update your PC using the Start menu entry “Microsoft

Update”, and install all necessary system updates for Microsoft Update.

You can then choose which updates to install on your virtual server. To do this, select “Custom” on

the Microsoft Update site. If you don’t want to install all updates, delete the default selection SP2

and also remove all other updates from the selection. You will find the .NET Framework under the

heading “Software, optional” on the Microsoft Update site. This is the only update that you

72

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

absolutely must install in order to complete the Windows PowerShell course on your virtual server.

However, all other updates are highly recommended for your other live systems.

Should you have problems accessing the Internet, ensure that your host system has Internet access,

and that your DNS configuration on the guest system is correct. Only the IP address 192.168.131.254

must be entered in the DNS server MMC in the properties of the DNS server Contoso-DC1.local as

the forwarder. This corresponds to the IP address of your host system, which can now take on the

DNS forwarder role.

Installation of a simple e-mail environment
The Windows Server 2003 is supplied complete with a POP3 e-mail server, which is sufficient for the

later exercises on automatically sending e-mails using Windows PowerShell. Outlook Express, a

simple e-mail client, is also available for checking the e-mails. Although these do not compare with

the power of Exchange and Outlook, they still allow you to do a fair amount. So, install the POP3

services by selecting Add or Remove Programs in the Control Panel, and clicking on Add/Remove

Windows Components. In theWindows Components List, select E-mail-Services and click on Next.

After installing the e-mail services, launch the administrative interface for the services from the Start

menu. You will find the POP3 Services MMC in the Administrative Tools.

In the POP3 service MMC, select your server (Contoso-DC1) and create a new domain. This is not an

Active Directory domain, but instead an e-mail SMTP domain. Call this domain contoso.local

Then, set up two inboxes, one for the administrator and one called Info. Automatically create a new

user for Info (default setting).

Now, all that’s left to do is set up Outlook Express. To do this, start Outlook Express from the Start

menu. A configuration wizard is automatically launched. Choose any display name you like for

yourself, and use administrator@contoso.local as your account. Your mailserver is a POP3 server.

Enter the name of your server (normallycontoso-dc1.contoso.local) as both the incoming and

outgoing server. Use “Data Administrator” as your login ID, and your Windows password (you can

check the box to save the password), and don’t forget to check the box for using Secure Password

Authentication (SPA).

You can now write your very first e-mail to check your e-mail environment. Enter info@contoso.local

and administrator@contoso.local as the recipient. After sending the e­mail, don’t forget to check for

new e-mails using Send/Receive…, as you will hopefully have received your own e-mail. If the e-mail

doesn't appear, or if you receive an error message, check the POP3 configuration and the Outlook

Express configuration for possible errors:

 In the POP3 service MMC, you can, for instance, check if the e-mails have even reached the

accounts (number of messages on the server).

 Outlook Express provides detailed error descriptions in the event that a server cannot be

contacted. Check the name closely for any typing errors, and whether you have checked the

box for using SPA as mentioned above.

73

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Further reading
The following are some of my favourite books on Windows PowerShell. As each person has their own

preferences in terms of author and writing style, you should take a look at other books as well. If you

have any book recommendations or tips, I’d like to hear them.

Language: English or German

Format:Soft cover/e-book

No. of pages: 576

ISBN-10: 1932394907

ISBN-13: 978-1932394900

“Windows PowerShell in Action” is a programming tutorial for system administrators and developers.

It provides the reader with a comprehensive introduction to the language and environment of

Windows PowerShell. The book shows you how to develop scripts and utilities to automate system

tasks, or create powerful system management tools to handle the day­to­day tasks involved in

Windows system administration. The book also covers topics such as batch scripting and string

processing, COM and WMI, as well as .NET and WinForms programming.

Bruce Payette, the author, also shows why PowerShell was made the way it was, and how it works.

Bruce’s knowledge as one of the chief developers of the language provides the reader with the

profound understanding required to get the most out of PowerShell.

http://www.manning.com/payette/

http://www.manning.com/payette/

74

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

Executing a script
powershell.exe –noexit &”c:\myscript.ps1”

Miscellaneous
Link break: ` (Shift ^ + space)
Get-Process | Select-Object `

name, ID

Comments: #
code here not executed

Several commands in one $a=1;$b=3;$c=9
$a=1;$b=3;$c=9
Forward output: | (AltGr 7)
Get-Service | Get-Member

Important commands
To get help on a cmdlet: get-help
Get-Help Get-Service

List of all available cmdlets: get-command
Get-Command

All properties and methods of an item: get-member
Get-Service | Get-Member

Using objects
To generate a new instance of a COM object:
New-Object -comobject <ProgID>
$a = New-Object –comobject "wscript.network"
$a.username

To generate an instance of a .Net Framework object (parameters can be transmitted when
necessary): New-Object –type <.Net Object>
$d = New-Object -Type System.DateTime 2006,12,25
$d.get_DayOfWeek()

Command line arguments
Must be transmitted with blanks
myscript.ps1 server1 benp

Can be used in script with $args field
$servername = $args[0]

$username = $args[1]

Setting the security policy
Reading and changing security policy:
Get-Execution und Set-Execution policy
Get-Executionpolicy

Set-Executionpolicy remotesigned

PowerShell cheat sheet

Fields
Initialization:
$a = 1,2,4,8

Query:
$b = $a[3]

Variables
Begin with $
$a = 32

Type specification:
[int]$a = 32

Constants
Are created without $:
Set-Variable –name b –value 3.142 –option constant

And queried with $:
$b

Output to console
Variable name
$a

or
Write-Host $a –foregroundcolor “green”

Using user entries
Read-Host reads user entries:
$a = Read-Host “Enter your name”

Write-Host "Hello" $a

Functions
Parameters are separated by a blank. Return
value is optional.
function sum ([int]$a,[int]$b)

{
 return $a + $b

}

sum 4 5

75

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

“Do-until” loop
Repeats loop until the “until” condition is met
$a=1
Do {$a; $a++}
Until ($a –gt 10)

“For each” – loop for groups of objects
Processes groups of objects:
Foreach ($i in Get-Childitem c:\windows)

{$i.name; $i.creationtime}

“For” loop
Repeats commands a set number of times
For ($a=1; $a –le 10; $a++)

{$a}

“Do-while” loop
Repeats loop as long as “do-while” condition is met
$a=1
Do {$a; $a++}
While ($a –lt 10)

“If” condition
Executes code when “if” condition is fulfiled
$a = "white"

if ($a -eq "red")

 {"The colour is red"}

elseif ($a -eq "white")

 {"The colour is white"}

else

 {"Another colour"}

“Switch” condition
Another option for executing code when a condition
is met
$a = "red"

switch ($a)

{

 "red" {"The colour is red"}

 "white"{"The colour is white"}

 default{"Another colour"}

}

Write to a simple file
Use Out-File or > for simple text files
$a = "Hello world"

$a | out-file test.txt

Or use >:
.\test.ps1 > test.txt

Get content from a file
Get-Content creates a field from the lines (objects) in
the file. Use “for each” loop afterwards:
$a = Get-Content "c:\servers.txt"

foreach ($i in $a)

{$i}

Write to a HTML file
 Use ConvertTo-Html followed by >
$a = Get-Process

$a | Convertto-Html -property Name,Path,Company > test.htm

Create a CSV file
Use Export-Csv and Select-Object to filter output:
$a = Get-Process

$a| Select-Object Name,Path,Company | Export-Csv -path test.csv

76

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

ACKNOWLEDGEMENTS
Following the overwhelming success of the first workbook, I received lots of requests for a second

part. I stuck with the idea of using real-life examples from the day-to-day work of an administrator,

meaning that the content was quickly defined. Unfortunately, my actual career took up so much of

my time that the publication date kept getting pushed back. So I’m very pleased that at least the year

of publication is still being kept. I hope that you, the reader, have enjoyed both this book and

Windows PowerShell, and that you are, like me, impressed by its capability and simple elegance.

This book is based on the work of many helpers who have created labs and practice exercises for

Windows PowerShell, or have carefully tested first drafts of this book. They deserve the credit here.

If you have any suggestions or feedback regarding this book, or you would like to see another book of

this kind (for instance on the Windows Server 2008 or Windows PowerShell V2), please e-mail me.

Although I may not be able to send replies to all e-mails, I will be happy to receive any type of

constructive criticism or positive feedback. My e-mail address is frankoch@microsoft.com.

And if you’re surprised that this little book with its 70-odd pages has an acknowledgements page,

you’re in the same boat as my colleague Sascha Corti, who I’d like to give my warmest regards to

here as well.

mailto:frankoch@microsoft.com

77

A
d

m
in

is
tr

at
iv

e
ta

sk
s

u
si

n
g

W
in

d
o

w
s

P
o

w
er

Sh
el

l

